【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(下)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第七章常微分方程高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第四節(jié)高階線性微分方程河海大學(xué)理學(xué)院《高等數(shù)學(xué)》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體
2025-05-07 12:10
【總結(jié)】目錄上頁下頁返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2024-10-19 17:11
【總結(jié)】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡稱二階線性方程.
2025-01-20 02:03
【總結(jié)】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
【總結(jié)】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
【總結(jié)】本科畢業(yè)設(shè)計(jì)(論文)題目:高階線性微分方程與線性微分方程組之間關(guān)系的研究院(系)專業(yè)班級姓名學(xué)號
2024-12-04 00:42
【總結(jié)】1第三節(jié)2解解法:兩邊積分n次即可.一、)()(xfyn?型例1.cose2的通解求xyx?????12sine21Cxyx?????212cose41CxCxyx?????3221221sine81CxCxCxyx
2024-12-08 01:04
【總結(jié)】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【總結(jié)】第三章一階微分方程解的存在定理[教學(xué)目標(biāo)]1.理解解的存在唯一性定理的條件、結(jié)論及證明思路,掌握逐次逼近法,熟練近似解的誤差估計(jì)式。2.了解解的延拓定理及延拓條件。3.理解解對初值的連續(xù)性、可微性定理的條件和結(jié)論。[教學(xué)重難點(diǎn)]解的存在唯一性定理的證明,解對初值的連續(xù)性、可微性定理的證明。[教學(xué)方法]講授,實(shí)踐。[教學(xué)時(shí)間]12學(xué)時(shí)[教學(xué)內(nèi)容]
2025-06-29 12:44
【總結(jié)】§解對初值的連續(xù)性和可微性定理200(,),(,)(1)()dyfxyxyGRdxyxy?????????考察的解對初值的一些基本性質(zhì)00(,,)yxxy???解對初值的連續(xù)性?解對初值和參數(shù)的連續(xù)性
2025-01-20 04:56
【總結(jié)】一、微分方程在經(jīng)濟(jì)中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟(jì)學(xué)中的綜合應(yīng)用1.分析商品的市場價(jià)格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對價(jià)格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時(shí),x=1200)(p的單位為元,x的單位為千克)試
2025-01-16 21:52
【總結(jié)】第二章一階微分方程的初等解法§變量分離方程與變量變換yxyedxdy????122??yxdxdy先看例子:xyeye?定義1形如)()()(yxfdxdy??方程,稱為變量分離方程..,)(),(的連續(xù)函數(shù)分別是這里yxyxf?),(yxFdxdy?一
2025-07-20 18:49
【總結(jié)】常微分方程論文學(xué)院:數(shù)學(xué)科學(xué)學(xué)院班級:12級統(tǒng)計(jì)班指導(dǎo)教師:宋旭霞小組成員:張維萍付佳奇張韋麗張萍
2025-06-03 12:01
【總結(jié)】綜上所述,方程xmexPcyybya???????)(具有如下形式的特解:xmkexQxy???)(。其中)()(xPxQmm是與同次但系數(shù)待定的多項(xiàng)式,?按k不是特征方程的根、是單根或二重根依次取0,1或2。應(yīng)用歐拉公式,2cosix
2025-01-19 14:43
【總結(jié)】目錄上頁下頁返回結(jié)束高階線性微分方程第六節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第七章目錄上頁下頁返回結(jié)束一、二階線性微分方程舉例當(dāng)重力與彈性力抵消時(shí),物體處于平衡狀態(tài),例1.質(zhì)量為
2025-05-09 02:16