【正文】
,最后歸一化。 vv)(vNvv ?? vv ?? 2模擬 ? 氣、液狀態(tài)方程 維里定理 (Virial Theorem) ? ???iiiB FrdTNkpV??1壓強 體積 粒子 i的位置矢量 粒子 i所受到的其它粒子的合相互作用力 溫度的模擬 可得此項 在溫度的模擬基礎(chǔ)上再模擬此項 模擬 例:用此可確定高密度氣體和液體狀態(tài)方程 (van der Waals方程 )中的系數(shù) 理想氣體狀態(tài)方程在高密度情況下不可用 確定系數(shù) a和 b 21??? abTkp B ???氣體密度 CASE(1) Couette Flow ? Size of domain is: 1 , 1 , 1 . 5 , 0 . 6 ,0 . 0 2 , 1 . 4l l w w w l l l w w w lw a l lFT? ? ? ? ? ?? ? ? ? ? ???6 1 26 1 24 ( )i j i ji j i jE rr????? ? ?6 1 27 1 24 ( 6 1 2 )ij ijij ijdEFd r r r????? ? ? ? ?If δ is less than 0, then the two species are immiscible. i, j represent different species CASE(1) Couette Flow z time CASE(1) Couette Flow z CASE(2) Contact Angle Simulation ? Mass: m[1]=1, m[2]=8, m[3]= ? L=, ? W= ? H= ? T= 1 1 111 1 1ij????12 6() i j i jL J i j i jVr rr??????? ? ? ?????? ? ? ?? ? ? ???i, j=1,2,3, 1 – red fluid, 2 wall, 3 – green fluid V CASE(3) RayleighTaylor instability generation(重力場 ) Dzwinel, W., Alda, W., Pogoda, M., and Yuen, ., 2022, Turbulent mixing in the microscale: a 2D molecular dynamics simulation, Physica D, Vol. 137, pp. 157171. Fig. 1. The snapshots of MD simulations of the R–T instability for two particle systems: (A) closed。 (B) open (the heavy fluid is coloured in light grey while the lighter one is dark grey, the black part of the figure is empty,