【總結(jié)】:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù):兩個(gè)重要極限:三角函數(shù)公式:183。誘導(dǎo)公式:函數(shù)角Asincostgctg-α-sinαcosα-tgα-ctgα90176。-αcosαsinαct
2024-09-01 22:00
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】返回后頁(yè)前頁(yè)顯然,按定義計(jì)算定積分非常困難,§2牛頓-萊布尼茨公式須尋找新的途徑計(jì)算定積分.在本節(jié)中,介紹牛頓-萊布尼茨公式,從而建立了定積分與不定積分之間的聯(lián)系,大大簡(jiǎn)化了定積分的計(jì)算.返回返回后頁(yè)前頁(yè)若質(zhì)點(diǎn)以速度v=v(t)作變速直線運(yùn)動(dòng),由定積分(
2024-08-29 09:07
【總結(jié)】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】2022/2/131作業(yè)P88習(xí)題5(1).7.8(2)(4).9(1).10(3).P122綜合題:4.5.復(fù)習(xí):P80——88預(yù)習(xí):P89——952022/2/132應(yīng)用導(dǎo)數(shù)研究函數(shù)性態(tài)局部性態(tài)—未定型極限
2025-01-16 06:48
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十六講求導(dǎo)法則腳本編寫(xiě)、教案制作:劉楚中彭亞新鄧愛(ài)珍劉開(kāi)宇孟益民響殃掌討菠紀(jì)介蓖林伍吊痔璃曹虧頌肛琢蔽旭謙蠻無(wú)愁版契橡緊涯
2025-01-20 05:32
【總結(jié)】一、問(wèn)題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問(wèn)題的提出)(xfy?ab
2024-08-30 12:42
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】微積分基本定理bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插
2025-04-29 01:42
【總結(jié)】微積分基本定理微積分是研究各種科學(xué)的工具,在中學(xué)數(shù)學(xué)中是研究初等函數(shù)最有效的工具.恩格斯稱之為“17世紀(jì)自然科學(xué)的三大發(fā)明之一”.學(xué)習(xí)微積分的意義微積分的產(chǎn)生和發(fā)展被譽(yù)為“近代技術(shù)文明產(chǎn)生的關(guān)鍵事件之一,它引入了若干極其成功的、對(duì)以后許多數(shù)學(xué)的發(fā)展起決定性作用的思想.”微積分的建立,無(wú)
【總結(jié)】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個(gè)分點(diǎn):
2025-05-04 22:34
【總結(jié)】如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),證Mdxxfabmba?????)(1)()()(abMdxxfabmba??????由閉區(qū)間上連續(xù)函數(shù)的介值定理知?jiǎng)t在積分區(qū)間],[ba上至少存在一個(gè)點(diǎn)?,使dxxfba?)())((abf???.)(ba???定理1(定積分中值定理)積分
2025-05-12 23:44
【總結(jié)】1.(2011·寧夏銀川一中月考)求曲線y=x2與y=x所圍成圖形的面積,其中正確的是( )A.S=(x2-x)dx B.S=(x-x2)dxC.S=(y2-y)dy D.S=(y-)dy[答案] B[分析] 根據(jù)定積分的幾何意義,確定積分上、下限和被積函數(shù).[解析] 兩函數(shù)圖象的交點(diǎn)坐標(biāo)是(0,0),(1,1),故積分上限是1,下限是0,
2025-06-24 18:39
【總結(jié)】定積分與微積分基本定理復(fù)習(xí)講義[備考方向要明了]考什么怎么考,了解定積分的基本思想,了解定積分的概念......[歸納·知識(shí)整合]1.定積分(1)定積分的相關(guān)概念:在f(x)dx中,a,b分別叫做積分下限與積分上限,區(qū)間[a,b]叫做積分區(qū)間,f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式.(2)定積分的幾何意義
2025-04-17 12:19
【總結(jié)】煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院一元微積分學(xué)融入數(shù)學(xué)建模思想的教學(xué)實(shí)踐與過(guò)程解析王憲杰煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,山東煙臺(tái),264005煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院高等數(shù)學(xué)在許多領(lǐng)域中都有著成功的應(yīng)用,但是,這些成功的應(yīng)用在目前幾乎所有《高等數(shù)學(xué)》教科書(shū)中卻很
2024-10-04 16:56