【摘要】EE
2025-06-29 05:17
【摘要】第三章圓知識點1垂徑定理及推論(A)①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③平分弦的直徑平分弦所對的兩段弧.☉O中,弦AB的長為6,圓心O到AB的距離為4,則☉O的半徑為(C)3.(瀘州中考)如圖,AB是☉O的直徑,弦C
2025-07-02 12:05
【摘要】第三章圓《圓》教學(xué)設(shè)計說明佛山市華英學(xué)校鄭義一、學(xué)生起點分析學(xué)生的知識技能基礎(chǔ)學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過圓的相關(guān)知識,對弦、弧、直徑、半徑、半圓、等圓的相關(guān)概念有初步的了解.但還沒有抽象出“平面上到定點的距離等于定長的所有點組成的圖形叫做圓”的概念.學(xué)生活動經(jīng)驗基礎(chǔ)在圓的相關(guān)知識的學(xué)習(xí)過程中,學(xué)生
2024-12-18 17:51
2025-06-29 21:28
【摘要】ODCBAM垂直于┗平分這條弦,并且平分弦所對的弧弦的直徑在⊙O中,直徑CD⊥弦AB∴AM=BM=AB21⌒AC=BC⌒⌒AD=BD⌒ODCBAM┗在⊙O中,直徑CD平分弦AB∴CD⊥AB⌒
2024-12-20 08:46
【摘要】圓的垂徑定理1、(2021年濰坊市)如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP:AP=1:5,則CD的長為().A.24B.28C.5D.54答案:D.考點:垂徑定理與勾股定理.點評:連接圓的半徑,構(gòu)造直
2024-12-18 16:57
【摘要】﹡3垂徑定理【基礎(chǔ)梳理】文字?jǐn)⑹鰩缀握Z言垂徑定理垂直于弦的直徑_____這條弦,并且_____弦所對的弧∵CD⊥AB,∴AE__BE,平分平分=ADBD?文字?jǐn)⑹鰩缀握Z言垂徑定理的推論平分弦(不是直徑)的直徑
2025-07-06 02:47
2025-06-27 12:39
【摘要】湘教版九年級下冊第二章EAODBC問題:左圖中AB為圓O的直徑,CD為圓O的弦。相交于點E,當(dāng)弦CD在圓上運動的過程中有沒有特殊情況?運動CD直徑AB和弦CD互相垂直特殊情況在⊙O中,AB為弦,CD為直徑,AB⊥CD提問:你在圓中還能找到那些相等的量?并證明你猜得的結(jié)論。
2024-12-27 21:28
【摘要】請觀察下列三個銀行標(biāo)志有何共同點?圓的對稱性?圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的?圓的對稱性?圓是軸對稱圖形.圓的對稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對稱軸.●O可利用折疊的方法即可解決上述問題.注意:
2024-12-27 21:27
【摘要】實踐探究把一個圓沿著它的任意一條直徑對折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?圓是軸對稱圖形,判斷:任意一條直徑都是圓的對稱軸()X任何一條直徑所在的直線都是對稱軸。觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一
2025-08-10 05:18
【摘要】課時教學(xué)筆記第周共課時主備人:授課時間:2021年3月日課題三、乘法——第3課時:隊列表演(二)內(nèi)容34-35課型新授教學(xué)目標(biāo)1、結(jié)合“隊列表演(二)”的情境,探索兩位數(shù)乘兩位數(shù)的豎式計算方法,并能正確的進(jìn)行
2024-12-18 04:10
【摘要】北京師范大學(xué)出版社九年級|下冊第三章圓3垂徑定理【創(chuàng)設(shè)情境】問題1請拿出準(zhǔn)備好的囿形紙片,將其沿囿心所在的任一條直線對折,你會發(fā)現(xiàn)什么?多折幾次試一試.追問1:由折紙可知囿是軸對稱圖形嗎?追問2:如果是一個殘缺的囿形紙片,你能找到它的囿心嗎?北京師范大學(xué)出版社九年級|下冊
2025-07-02 20:15
2025-07-05 03:51
【摘要】垂徑定理一、選擇題1.下列語句中,不正確的個數(shù)是()①弦是直徑②半圓是?、坶L度相等的弧是等?、芙?jīng)過圓內(nèi)一點可以作無數(shù)條直徑A.1B.2C.3D.42.如圖,△ABC內(nèi)接于⊙O,OD⊥BC于D,∠A=50°,則∠OCD的度
2024-12-18 16:36