【摘要】等差數(shù)列的前n項和2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-12-08 12:17
【摘要】等差數(shù)列前n項和公式的兩個側(cè)重摘要:本文從在思想方法的角度給出了等差數(shù)列前n項和兩個公式的側(cè)重點。關(guān)鍵詞:等差數(shù)列思想前n項和公式我們知道,教材就等差數(shù)列前n項和給出了兩個公式:設(shè)等差數(shù)列??na的前n項和公式和為nS,公差為d,*nN?,則1(1)2nnnSnad???(公式一)1(
2024-12-29 03:42
【摘要】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-25 10:14
【摘要】等差數(shù)列的前n項和(一)自主學(xué)習知識梳理1.把a1+a2+?+an叫數(shù)列{an}的前n項和,記做________.例如a1+a2+?+a16可以記做________;a1+a2+a3+?+an-1=________(n≥2).2.若{an}是等差數(shù)列,則Sn可以用首項a1和末
2024-12-09 23:20
【摘要】課題:等差數(shù)列的通項公式班級:姓名:學(xué)號:第學(xué)習小組【學(xué)習目標】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題?!菊n前預(yù)習】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-12-10 01:05
【摘要】等差數(shù)列的前n項和(二)課時目標n項和的性質(zhì),并能靈活運用.n項和的最值問題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關(guān)系對任意數(shù)列{an},Sn是前n項和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-28 13:12
【摘要】等差數(shù)列的前n項和(2)教學(xué)目標:1.進一步熟練掌握等差數(shù)列的通項公式和前n項和公式.2.了解等差數(shù)列的一些性質(zhì),并會用它們解決一些相關(guān)問題.教學(xué)重點:熟練掌握等差數(shù)列的求和公式.教學(xué)難點:靈活應(yīng)用求和公式解決問題.教學(xué)方法:啟發(fā)、討論、引導(dǎo)式.教學(xué)過程:一、問題情境
【摘要】2.等差數(shù)列的前n項和學(xué)習目標預(yù)習導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入數(shù)學(xué)史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱為歷史上最偉大的三位數(shù)學(xué)家之一,他就是18世紀德國著名的數(shù)學(xué)家——高斯.高斯在上小學(xué)時,就能很快地算出1+2+3+…+1
2024-12-07 23:16
【摘要】等差數(shù)列前n項和公式的應(yīng)用等差數(shù)列的前n項和公式是一個很重要的公式.對這個公式的形式和本質(zhì)特征的研究,將有助于提高我們的計算能力和分析、解決問題的能力.一、分析公式的結(jié)構(gòu)特征難得出下面的結(jié)論:中間項.2.當n是偶數(shù)時,a1與an的等差中項不是該數(shù)列的項,它的值等于數(shù)列
2024-12-23 03:12
【摘要】第7課時等比數(shù)列的前n項和n項和公式的推導(dǎo)方法.n項和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩·班·達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格
2024-12-28 02:37
【摘要】課題:等差數(shù)列的概念班級:姓名:學(xué)號:第學(xué)習小組【學(xué)習目標】1、掌握等差數(shù)列的概念;2、能夠利用等差數(shù)列的定義判斷給定數(shù)列是否為等差數(shù)列【課前預(yù)習】1、上節(jié)課我們學(xué)習了數(shù)列的定義及通項公式,那么什么叫數(shù)列?什么叫??na的通項公式)?2、①德國數(shù)
【摘要】?2.2等差數(shù)列的前n項和?一、等差數(shù)列{an}的前n項和公式?一般地,我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用Sn表示,即Sn=①________.?對于等差數(shù)列{an}來說,設(shè)其首項為a1,末項為an,項數(shù)為n,由倒序相加法可知其前n項和Sn=②:等差數(shù)列前n項和
2024-12-07 17:38
【摘要】等差數(shù)列的前n項和A組基礎(chǔ)鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-28 20:22
【摘要】等差數(shù)列的前n項和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時的內(nèi)容。主要研究等差數(shù)列的前n項和公式的推導(dǎo)及其簡單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識的延續(xù)和深化,又是后面學(xué)習“等比數(shù)列及其前n項和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和