【摘要】APQFOxy90題突破高中數(shù)學(xué)圓錐曲線,已知直線L:)0(1:12222??????babyaxCmyx過橢圓的右焦點F,且交橢圓C于A、B兩點,點A、B在直線2:Gxa?上的射影依次為點D、E。(1)若拋物線yx342?的焦點為橢圓C的上頂點,求橢圓C的方程;
2025-01-24 07:43
【摘要】鳳凰出版?zhèn)髅郊瘓F版權(quán)所有網(wǎng)站地址:南京市湖南路1號B座808室聯(lián)系電話:025-83657815Mail:第13講圓錐曲線(含軌跡問題)本節(jié)知識在江蘇高考試題中要求比較低,橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)是B級考點,其余都是A級考點,但高
2024-09-11 20:11
【摘要】數(shù)學(xué)壓軸題圓錐曲線類一1.如圖,已知雙曲線C:的右準(zhǔn)線與一條漸近線交于點M,F(xiàn)是雙曲線C的右焦點,O為坐標(biāo)原點.(I)求證:;(II)若且雙曲線C的離心率,求雙曲線C的方程;(III)在(II)的條件下,直線過點A(0,1)與雙曲線C右支交于不同的兩點P、Q且P在A、Q之間,滿足,試判斷的范圍,并用代數(shù)方法給出證明.2.已知函數(shù),數(shù)列滿足
2024-08-24 18:42
【摘要】高中數(shù)學(xué)解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標(biāo);(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標(biāo)系中,設(shè)橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2024-08-12 02:05
【摘要】高中數(shù)學(xué)知識點大全—圓錐曲線一、考點(限考)概要:?1、橢圓:?(1)軌跡定義:??①定義一:在平面內(nèi)到兩定點的距離之和等于定長的點的軌跡是橢圓,兩定點是焦點,兩定點間距離是焦距,且定長2a大于焦距2c。用集合表示為:;??②定義二:在平面內(nèi)到定點的距離和它到一條定直線的距離之比是個常數(shù)e,那么這個點的軌跡叫做
2024-08-11 13:06
【摘要】高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線.點與曲線的關(guān)系:若曲線的方程是,則點在曲線上;點不在曲線上.兩條曲線的交
2025-04-19 05:08
【摘要】WORD資料可編輯§知識要點一、橢圓方程1.橢圓方程的第一定義:平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于定長(定長通常等于2a,且2aF1F2)的點的軌跡叫橢圓。(1)①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點,焦點在x軸上:.ii.
【摘要】......高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這
2025-04-19 05:07
【摘要】橢圓【學(xué)習(xí)目標(biāo)】1.掌握橢圓的標(biāo)準(zhǔn)方程,會求橢圓的標(biāo)準(zhǔn)方程;2.掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級要求【自學(xué)評價】橢圓定義:2.橢圓的標(biāo)準(zhǔn)方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質(zhì):方程
2025-06-22 23:27
【摘要】高中數(shù)學(xué)圓錐曲線測試題一、選擇題1.雙曲線的實軸長是()(A)2(B)(C)4(D)4【解析】可變形為,則,,.故選C.()(A)(B
2025-01-29 09:45
【摘要】.高考圓錐曲線試題精選一、選擇題:(每小題5分,計50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國卷Ⅰ文、理)橢圓的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則=() A.B.C.D.43.(2006遼寧文)方程的兩個
2024-08-24 18:16
【摘要】WORD資料可編輯有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對
2025-04-19 05:13
【摘要】圓錐曲線解題方法技巧歸納第一、知識儲備:1.直線方程的形式(1)直線方程的形式有五件:點斜式、兩點式、斜截式、截距式、一般式。(2)與直線相關(guān)的重要內(nèi)容①傾斜角與斜率②點到直線的距離③夾角公式:(3)弦長公式直線上兩點間的距離:或(4)兩條直線的位置關(guān)系①=-1②2、圓錐曲線方程及性質(zhì)(1)、橢圓的方程的形式有幾種?(三種形式
2024-08-13 12:41
【摘要】圓錐曲線方程知識要點一、橢圓方程及其性質(zhì).1.橢圓的第一定義:橢圓的第二定義:,點P到定點F的距離,d為點P到直線l的距離其中F為橢圓焦點,l為橢圓準(zhǔn)線①橢圓的標(biāo)準(zhǔn)方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細(xì)講).②通徑:垂直于對稱軸且過焦點的弦叫做通徑,橢圓通徑長為③設(shè)橢圓:上弦AB的中點為M(x0,y0),則斜率kAB=,對橢圓:,則kAB=.弦
【摘要】1第八章橢圓、雙曲線與拋物線考點綜述橢圓、雙曲線與拋物線是高中數(shù)學(xué)的一個重要內(nèi)容,它的基本特點是數(shù)形兼?zhèn)洌膳c代數(shù)、三角、幾何知識相溝通,歷來是高考的重點內(nèi)容.縱觀近幾年高考試題中對圓錐曲線的考查,主要體現(xiàn)出以下幾個特點:1.基本問題,主要考查以下內(nèi)容:①橢圓、雙曲線與拋物線的兩種定義、標(biāo)準(zhǔn)方程及a、b、c、e、p五
2024-09-11 16:15