【摘要】第一篇:中心對稱和中心對稱圖形數(shù)學(xué)教案 中心對稱和中心對稱圖形數(shù)學(xué)教案 1.中心對稱 把一個圖形繞著某一點(diǎn)旋轉(zhuǎn),如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱,這個點(diǎn)叫做對稱中心,...
2024-11-15 01:10
【摘要】(1)如圖,將線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?AB可以發(fā)現(xiàn):線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°后與本身重合2)如圖將ABCD繞它的兩條對角線的交點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCD可以發(fā)現(xiàn):ABCD繞它的兩條對角線交點(diǎn)O旋轉(zhuǎn)180
2024-11-27 02:19
【摘要】《軸對稱和中心對稱》一、選擇題1.(2020紹興)我國傳統(tǒng)建筑中,窗框(如圖1)的圖案玲瓏剔透、千變?nèi)f化,窗框一部分如圖2,它是一個軸對稱圖形,其對稱軸有()BA.1條B.2條C.3條D.4條2.(2020南充)如圖,對折矩形紙片ABCD,使AB與DC重合得到折痕E
2024-12-05 16:10
【摘要】,將正方形圖案繞中心O旋轉(zhuǎn)180°后,得到的圖案是(),其中是中心對稱圖形的有(),既是軸對稱圖形又是中心對稱圖形的是(),旋轉(zhuǎn)600后可以和原圖形重合的是()A.正六邊形B.
2024-11-30 22:54
【摘要】§教學(xué)目標(biāo):1.在探究旋轉(zhuǎn)對稱圖形和中心對稱圖形的概念過程中,感受從一般到特殊的研究問題方法.2.理解旋轉(zhuǎn)對稱圖形和中心對稱圖形的區(qū)別和聯(lián)系.3.感受旋轉(zhuǎn)對稱圖形和中心對稱圖形在生活中的應(yīng)用,體會數(shù)學(xué)的價值.教學(xué)重點(diǎn)和難點(diǎn):探究旋轉(zhuǎn)對稱圖形和中心對稱圖形的概念形成過程.教學(xué)過程:教師活動學(xué)生活動教學(xué)設(shè)計意圖一、情景引入上節(jié)課學(xué)習(xí)了
2024-09-09 16:07
【摘要】第一篇:初中數(shù)學(xué)知識點(diǎn)總結(jié):軸對稱與中心對稱 知識點(diǎn)總結(jié) 一、軸對稱與軸對稱圖形: :把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,兩個圖形中的對...
2024-10-28 22:47
【摘要】南京市第十三中學(xué)潘永斌如圖,某同學(xué)打臺球時想繞過黑球,通過擊主球,使主球撞擊桌邊MN后反彈來擊中彩球.請在圖中標(biāo)明,主球撞在MN上哪一點(diǎn)才能達(dá)到目的(以主球、彩球的球心A、B來代表兩球)?MN主球彩球A想一想BB2已知:如圖,P1、P2分別是點(diǎn)P關(guān)于OA
2024-11-29 09:44
【摘要】請觀察下面的圖形是不是我們以前學(xué)過的軸對稱圖形?若是請畫出它的對稱軸.欣賞圖片,尋找其共同點(diǎn)在實際生活中,不僅有折疊、還有旋轉(zhuǎn),以上圖形旋轉(zhuǎn)180°后,都能轉(zhuǎn)到與它相對的位置上,并且與原來的圖互相重合。那么這個圖形叫做中心對稱圖形,這個中心叫做它的對稱中心。在26個英文大寫
2025-08-09 16:22
【摘要】第15章平移與旋轉(zhuǎn)怎樣的兩個圖形叫做關(guān)于某直線對稱?請舉出幾個生活的例子.?若能夠重合,怎樣才能使這幾個圖形重合呢??觀察與思考:(考慮顏色)關(guān)于某直線成軸對稱嗎?為什么?(1)(2)(3)把一個圖形繞著一個點(diǎn)旋轉(zhuǎn)180?,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)
2024-12-11 05:36
【摘要】毛壩中學(xué)導(dǎo)學(xué)案學(xué)科:自主學(xué)習(xí)乃學(xué)習(xí)之本。九年級1-4班第組學(xué)生姓名組評:編寫時間:年月日授課時間:年月日共
2024-12-11 00:04
【摘要】1、教學(xué)內(nèi)容中心對稱2、教材分析3、學(xué)情分析學(xué)生在學(xué)習(xí)了旋轉(zhuǎn)的基礎(chǔ)上學(xué)習(xí)中心對稱,在作圖方面已經(jīng)有了一定的基礎(chǔ),中心對稱是一種特殊的旋轉(zhuǎn),對于性質(zhì)的得出難度不大。4、教學(xué)目標(biāo)⑴.知識技能 ①了解中心對稱、對稱中心、關(guān)于中心的對稱點(diǎn)等概念及掌握這些概念解決一些問題②通過具體實例認(rèn)識兩個圖形關(guān)于某一點(diǎn)中心對稱的本質(zhì):就是一個圖形繞一點(diǎn)旋轉(zhuǎn)
2025-05-01 12:22
2024-12-11 01:22
【摘要】用平移、旋轉(zhuǎn)和軸對稱研究幾何問題學(xué)習(xí)旋轉(zhuǎn)要解決的問題:分三個層次①直接的旋轉(zhuǎn)作圖或者旋轉(zhuǎn)關(guān)系的敘述;②增加干擾線段,隱含部分已知,主動發(fā)現(xiàn)旋轉(zhuǎn)關(guān)系,并證明某些結(jié)論③需要添加輔助線,完善圖形創(chuàng)造情境,進(jìn)行證明。要重視的問題:共頂點(diǎn)的等腰三角形的出現(xiàn)是實現(xiàn)旋轉(zhuǎn)的情境;(輔助線添加方向)一、平移、旋轉(zhuǎn)和軸對稱在幾何題中的應(yīng)用1.已知:△ABC與△:BD⊥EC.2
2025-04-09 06:05
【摘要】23.2.2中心對稱圖形,,,(2)圓,(4)正方形,(1)線段,(3)平行四邊形,,A,B,觀察,將下面的圖形繞O點(diǎn)旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?,O,,,,,O,如果一個圖形繞一個點(diǎn)旋轉(zhuǎn)180°后,...
2024-11-17 00:12
【摘要】§中心對稱認(rèn)真觀察,冷靜判斷(1)(2)軸對稱復(fù)習(xí):??把一個圖形沿著某一條直線折疊能與另一個圖形完全重合,那么就說這兩個圖形關(guān)于這條直線對稱或軸對稱..的垂直平分線.認(rèn)真觀察,冷靜判斷(1)(2)(1)把其中一個圖案
2024-09-21 14:17