【正文】
的近似分析圖從DOE分析結(jié)果看,4—2(四號(hào)樣品的第二組參數(shù))情況最滿足要求,故四號(hào)樣品的最優(yōu)設(shè)計(jì)參數(shù)為加工速度V=。:圖426 第六組實(shí)驗(yàn)用二乘回歸法進(jìn)行的近似分析圖從DOE分析結(jié)果看,6—1(六號(hào)樣品的第一組參數(shù))情況最滿足要求,故六號(hào)樣品的最優(yōu)設(shè)計(jì)參數(shù)為脈寬:。:圖428 第八組實(shí)驗(yàn)用二乘回歸法進(jìn)行的近似分析圖從DOE分析結(jié)果看,8—2(八號(hào)樣品的第二組參數(shù))情況最滿足要求,故八號(hào)樣品的最優(yōu)設(shè)計(jì)參數(shù)為激光功率f=22HZ。:圖430 第十組實(shí)驗(yàn)用二乘回歸法進(jìn)行的近似分析圖從DOE分析結(jié)果看,10—3(十號(hào)樣品的第三組參數(shù))情況最滿足要求,故十號(hào)樣品的最優(yōu)設(shè)計(jì)參數(shù)為f=22HZ。 最終分析結(jié)果 進(jìn)過(guò)各組實(shí)驗(yàn)試驗(yàn)參數(shù)及結(jié)果優(yōu)化分析后,從各組結(jié)果看,最符合要求的即最優(yōu)的激光加工工藝參數(shù)為: (1)第二、四、八、九、十、十一組實(shí)驗(yàn)優(yōu)化結(jié)果綜合分析得:加工圖形為直線,加工速度V=,波形:4,脈寬:,激光功率I=250A,f=30HZ,加清水、 ; (2)第五、六、七組實(shí)驗(yàn)優(yōu)化結(jié)果綜合分析得:加工圖形為點(diǎn),加工速度V=4mm/s,波形:4,脈寬:,激光功率:I=150A,f=7HZ。第5章 總結(jié)與展望 課題的總結(jié) 激光加工技術(shù)是現(xiàn)代工業(yè)中應(yīng)用非常廣泛的一項(xiàng)加工技術(shù),激光加工技術(shù)是利用激光束與物質(zhì)相互作用的特性對(duì)材料(包括金屬與非金屬)進(jìn)行切割、焊接、表面處理、打孔、微加工等的一門(mén)技術(shù)。激光加工技術(shù)中有著許多工藝參數(shù),這些工藝參數(shù)對(duì)于激光加工的結(jié)果有著十分重要的影響。本文主要進(jìn)行了以下研究工作: 對(duì)實(shí)驗(yàn)設(shè)計(jì)(DOE)和激光加工的理論知識(shí)進(jìn)行了分析總結(jié),研究了激光加工參數(shù)對(duì)激光加工結(jié)果的影響,并利用實(shí)驗(yàn)設(shè)計(jì)的方法,研究根據(jù)激光加工結(jié)果得出最有激光加工參數(shù)。 進(jìn)行激光加工實(shí)驗(yàn),收集在各種不同激光加工參數(shù)條件下的激光加工實(shí)驗(yàn)結(jié)果,并對(duì)收集到的各項(xiàng)數(shù)據(jù)進(jìn)行歸類和整理。 課題的展望得出的優(yōu)化結(jié)果是在近似處理后得到的,而測(cè)量的參數(shù)組較少,其結(jié)果并不十分準(zhǔn)確,與實(shí)際激光加工有一定差距。致謝在此,首先要感謝我尊敬的指導(dǎo)老師陳雪輝老師,本文是在陳老師的悉心指導(dǎo)下完成的。從論文的選定到實(shí)驗(yàn)研究,從資料收集到方案確定,陳雪輝老師都給了我大量的中肯的建議和意見(jiàn),我的每步工作都凝聚了陳老師的辛勤汗水。在此表達(dá)我對(duì)陳雪輝老師的感激之情。再次向全體老師表示衷心的謝意!互換性與技術(shù)測(cè)量是陳老師教授的第一門(mén)課程。同時(shí),我還得感謝在我的大學(xué)四年求學(xué)中,傳授給我知識(shí)的老師們,正是你們無(wú)私的傳道授業(yè)解惑精神,使我有了良好的專業(yè)知識(shí),從而也使我的畢業(yè)設(shè)計(jì)得以順利完成。以及室友們共同營(yíng)造的畢業(yè)設(shè)計(jì)的積極氛圍,在一定程度上也使得我的畢業(yè)設(shè)計(jì)順利完成。. DAO。. VU. Experimental and Mathematical Optimisation of a Novel Sustainable Masonry Unit. Masonry [11] 胡于進(jìn),,清華大學(xué)出版社,[12] 雷剛,羅強(qiáng),,重慶理工大學(xué)學(xué)報(bào),2011,05期[13] 楊明,汽車零部件,2011,11期[14] ,汽車零部件,2011,11期[15] 劉帥,趙濤,汽車零部件,2011,11期[16] ,機(jī)械制造與自動(dòng)化,2011,01期[17] ,汽車零部件,2008,04期[18] ,汽車零部件,2007,09期[19] 郝棋,汽車零部件,2009,05期[20] ,汽車零部件,2006,05期附錄 A 畢業(yè)設(shè)計(jì)任務(wù)書(shū)安徽建筑工業(yè)學(xué)院畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)課題名稱實(shí)驗(yàn)設(shè)計(jì)(DOE)技術(shù)在激光加工工藝參數(shù)優(yōu)化中的應(yīng)用系 別機(jī)電工程學(xué)院專 業(yè)08機(jī)械設(shè)計(jì)及自動(dòng)化姓 名朱洪學(xué) 號(hào)082100102342012年2月20日至2012年6月3日共15周指導(dǎo)教師簽字系主任簽字2012年2月27日一、畢業(yè)設(shè)計(jì)的內(nèi)容借助HyperWorks/Hypersyudy中的實(shí)驗(yàn)設(shè)計(jì)(DOE)模塊進(jìn)行各種不同的激光加工工藝參數(shù)的優(yōu)化。三、畢業(yè)設(shè)計(jì)應(yīng)完成的工作具體地應(yīng)完成下列工作:1) 收集設(shè)計(jì)資料,完成與本研究相關(guān)的文獻(xiàn)綜述、研究方法剖析;2) 整理試驗(yàn)數(shù)據(jù);3) 工藝參數(shù)優(yōu)化;4) 歸納分析并總結(jié);5) 翻譯一篇與設(shè)計(jì)內(nèi)容有關(guān)的英文文獻(xiàn)(英文字符不少于3000),翻譯畢業(yè)設(shè)計(jì)中文摘要(英文字符不少于300)。3) 英譯漢一份。 13周()2畢業(yè)實(shí)習(xí),完成實(shí)習(xí)報(bào)告和英文資料翻譯46周()3試驗(yàn)數(shù)據(jù)整理710周()4參數(shù)優(yōu)化1114周()5撰寫(xiě)大論文和小論文,提交成果15周()6畢業(yè)答辯,成績(jī)?cè)u(píng)定注:,需提交中期報(bào)告五、應(yīng)收集的資料、主要參考文獻(xiàn)及實(shí)習(xí)地點(diǎn)應(yīng)收集的資料、主要參考文獻(xiàn)包括:1) 中國(guó)學(xué)術(shù)期刊網(wǎng)、萬(wàn)方學(xué)位數(shù)據(jù)庫(kù)上的近五年的相關(guān)文獻(xiàn);2) 學(xué)校圖書(shū)館中相關(guān)技術(shù)書(shū)籍;實(shí)習(xí)地點(diǎn):機(jī)械教研室。uttnerDLR – Institute of Technical Physics, Pfa?enwaldring 3840, 70569 Stuttgart,Germany. new era of fundamental research and its application to surface processing has been created by the invention of femtosecond laser pulses.Theoretical aspects of these processes are considered in this chapter. The di?erences between these very short pulses and the more conventional longer pulses arediscussed, including the electronelectron scattering time and the nonequilibriumelectron distribution. The material properties of objects exposed to femtosecondlaser pulses are discussed with particular reference to their optical and thermalproperties. The problem of determining the electron and phonon temperature distributions is addressed by means of the twotemperature model and the extendedtwotemperature model. IntroductionThe invention of femtosecond laser pulses opened a new era of basic researchand surface processing. Laser ablation, the removal of matter by means ofa laser beam, is one of the most promising technologies among femtosecondlaser applications, because the ablation physics of extremely short pulses isvery di?erent from that of longer laser pulses. During the last thirty yearsgreat advances have been achieved both in theoretical descriptions and inexperimental investigations. Nevertheless, a plete understanding of thewhole process is not available yet. This is due to the plicated nature ofthe process. One has to take into account not only the processing conditionsbut also the material properties like, for example, absorption, heat conduction and plasma formation. These properties are, however, in many casesnot given by their steady state values, or cannot be described by equationsderived under the assumption of local thermal equilibrium. They are modi?eddue to the lack of equilibrium that is characteristic of ultrashort time lasermaterial interaction. Both the optical and the thermodynamic properties ofthe solid are a?ected by the modi?cations. In addition, the presence of strongnonlinear processes caused by the temperature dependence of quantities like316 Bernd H168。uttnerFig. . Electronelectron scattering time of gold for three laser energies as afunction of electron temperature.electronelectron scattering time is de?ned bywhere the constants a and b are independent of the electron energy, E, andthe electron temperature, Te. For normal transport, remembering T = 300 Kcorresponds to eV, the electron energy is very close to the Fermi energy,EF, leading to a rather large value for the electronelectron scattering time.In the case of laser excitation, however, the electron energy is approximatelyFermi energy plus photon energy. Consequently, the denominator may beelarge and, therefore,τe?e small. Furthermore, since electron temperatures ofsome thousand degrees Kelvin are quite normal for femtosecond laser metalinteraction, the second temperature dependent part also contributes remarkably to the reduction of the scattering time. Physically speaking, far abovethe Fermi energy the phase space for scattering is huge and is essentially notrestricted by Pauli’s principle since there are a lot of empty places availablefor scattering events. Figure shows, as an example, the electronelectronscattering time of gold for three energies above the Fermi energy as a functionof the electron temperature。 in most cases this is done at another wavelength, bya weak probe laser at the surface. For very thin ?lms, one can also determinethe transient thermal transmis