【正文】
(OC2H5)4在水乙醇體系中反應(yīng)形成前驅(qū)體,再燒結(jié)合成了Li2MnSiO4正極材料,他們利用XPS技術(shù)證實(shí)了合成材料是純相的Li2MnSiO4。Li2MnSiO4的理論比容量達(dá)到333 mAh/g,但目前的實(shí)際比容量還相對(duì)較低, 等[49]首次合成并測(cè)試Li2MnSiO4的電化學(xué)性能時(shí),其第一次循環(huán)可逆比容量?jī)H為100mAh/g 左右,后續(xù)電化學(xué)循環(huán)中,可逆容量逐步退化, 倍鋰離子可逆的進(jìn)行脫嵌。測(cè)試結(jié)果表明,第一次充電時(shí),第一次放電時(shí),10 次充放電循環(huán)以后,容量衰減為40 mAh/g以下,這說(shuō)明在該實(shí)驗(yàn)條件下,碳包覆和減小材料粒度雖然可以提高材料的電子電導(dǎo)率并有利于鋰離子擴(kuò)散,但并不能有效提高材料的電化學(xué)性能。 等[52]利用XRD 技術(shù)研究了不同脫嵌鋰狀態(tài)下Li2MnSiO4材料的晶體結(jié)構(gòu),發(fā)現(xiàn)在鋰離子從Li2MnSiO4逐步脫出的過(guò)程中,材料晶體結(jié)構(gòu)發(fā)生變化,晶體特征逐漸消失,最終結(jié)構(gòu)完全坍塌,從而導(dǎo)致了容量的退化。Anton Kokalj 等[53]通過(guò)實(shí)驗(yàn)分析和密度泛函理論計(jì)算證實(shí)了為什么在實(shí)驗(yàn)中Li2MnSiO4電極很難在電化學(xué)循環(huán)中脫出1倍以上的鋰離子,并發(fā)現(xiàn)Li2MnSiO4大量脫出鋰離子時(shí),結(jié)構(gòu)將發(fā)生坍塌,并且向無(wú)定形態(tài)轉(zhuǎn)變。合成了Fe摻雜的Li2MnxFe1xSiO4/C并對(duì)其電化學(xué)性能進(jìn)行了研究。而溶膠凝膠法合成Li2MnxFe1xSiO4/C (x = 0, , , )復(fù)合正極材料除Li2FeSi04 (x=0)外循環(huán)性能均較差,容量衰減較快,與Li2MnSi04相似。很明顯,研究Li2MnSiO4材料的容量退化機(jī)制至關(guān)重要。Li2CoSiO4也屬于正交晶系,空間群Pmn21,晶格常數(shù)a=,b=,c=[54]。不同方法所合成Li2CoSiO4材料均為低溫Li3P04的同構(gòu)體。通過(guò)水熱輔助溶膠凝膠法合成了具有較小粒徑和高的相純度的Li2CoSiO4材料,顯示出較高的電化學(xué)活性。由于其低的電導(dǎo)率和無(wú)法實(shí)現(xiàn)有效的表面碳包覆,Li2CoSiO4材料目前仍不能達(dá)到實(shí)用化的水平。Li2NiSiO4則由于預(yù)計(jì)的脫嵌鋰電位最高[55], V, V,目前還沒(méi)有出現(xiàn)試驗(yàn)研究報(bào)道。如果能夠通過(guò)離子摻雜降低其脫嵌鋰電位,將是一種很有希望的正極材料。(2)目前聚陰離子型正極材料中只有橄欖石型LiFePO4 得到了全面的研究,其具有安全性能好、循環(huán)壽命長(zhǎng)、原材料來(lái)源廣泛、無(wú)環(huán)境污染等顯著優(yōu)點(diǎn),成為大型動(dòng)力電池的首選正極材料并已部分商業(yè)化。 (3))Li2MSiO4(M = Fe, Mn, Co, Ni)系鋰離子電池正極材料具有理論容量高,成本低廉,來(lái)源廣泛,環(huán)境友好等優(yōu)點(diǎn),并且剛剛興起,必將掀起新一輪正極材料研究熱潮。Li2MnSiO4材料的容量衰減機(jī)理還需進(jìn)一步探討。離子摻雜改性也是大幅提高該系材料電化學(xué)性能的關(guān)鍵,也是研究的重點(diǎn)。J. Electrochemical Society, 2002, 144(9): 31643168[13] C H Han, Y S Hong, C M Park, et and electrochemical properties of lithium cobalt oxides prepared by molten salt synthesis using the eutectic mixture of LiClLiC03[J].J. Power Sources, 2001,92(4): 95一101[14] S G Kang, K Y S Ryu. Electrochemical and structural properties of HT LiCo02 and HT LiCo02 prepared by citrate solgel method[J]n A, Kamali Sm L, et al.The lithium extraction/insertion mechanism in Li2FeSiO4 [J].Journal of Materials Chemistry, 2006,16,22662272.[41] Nyten A ,Abouimrane A,Armand M,et al.[J].Electrochem Commun,2005,7:156160.[42] PETER L, RAJEEV A,ANTON N, et al. An ab initio study of the Liion battery cathode material Li2FeSiO4 [J]. Electrochemistry Communications, 2006, 8:797800.[43] NYTEN A, ABOUIMRANE A, ARMAND M, et al. Electrochemical performance of Li2FeSiO4 as a new Libattery cathode material [J]. Electrochem Commun, 2005, 7:156160.[44] DOMINKO R, BELE M, GABERSCEK M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Libattery cathode materials[J]. Electrochem Commun, 2006,8:217222.[45] DOMINKO R,CONTE D E,HANZEL D,et al. Impact of synthesis conditions on the structure and performance of Li2FeSiO4[J]. Journal of Power Sources,2008, 178:842847.[46] Z L Gong,Y X Li,Y Li2FeSi04 electrode material synthesized through hydrothermalassisted solgel process[J].Electrochemical and Solidstate Letters, 2008,11(5): A60A63[47] R Domink, M bele, M Gaberscek. Structure and electrochemical performance of Li2MnSi04 and Li2FeSi04 as potential Libattery cathode materials[J].Electrochemistry Communications, 2006, 8(2): 217222[48] Deyu Wang, X D Wu, Z X Wang, et causing cyclicInstability of LiFeP04 cathode material[J] .J. Power Sources, 2005,140(1): 125一128[49] DOMINKO R, BELE M,GABERSCEK M,et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Libattery cathode materials[J]. Electrochem Commun,2006,8:217222.[50] YANG Y, LI Y X, GONG Z L. Synthesis and characterization of high capacity silicate/C cathode materials for lithium ion batteries [C]Abstract 210, IMLB 2006. Biarritz, France: 2006:1823.[51] LI Yixiao, GONG Zhengliang, YANG Yong. Synthesis and characterization of Li2MnSiO4/C nanoposite cathode material for lithium ion batteries[J]. Journal of Power Sources, 2007, 174( 2):528532.[52] DOMINKO R, BELE M, KOKALJ A, et al. Li2MnSiO4 as a potential Libattery cathode material[J]. Journal of Power Sources, 2007,174(2):457461.[53] ANTON K, ROBERT D, GREGOR M, et al. Beyond oneelectron reaction in Li cathode materials: Designing Li2MnxFe1xSiO4 [J].Chem Mater,2007, 19(15):36333640.[54] GONG Z L, LI Y X, YANG Y. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries [J]. Journal of Power Sources, 2007,174(2):524527.[55] ARROYODE DOMPABLO M E, ARMAND M, TARASCON JM,et design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J]. Electrochemistry Communications,2006, 8:12921298.