【摘要】勾股定理第3課時(shí)【基礎(chǔ)梳理】在數(shù)軸上找表示的點(diǎn)要在數(shù)軸上畫出表示的點(diǎn),只要畫出長(zhǎng)為的線段即可.利用勾股定理,長(zhǎng)為的線段是直角邊為正整數(shù)__,__的直角三角形的斜邊.2313131313如圖,在數(shù)軸上找出表示3的點(diǎn)A,則OA=__,過(guò)點(diǎn)A作直線l垂直于O
2025-06-27 12:38
2025-06-27 21:10
【摘要】第十七章 勾股定理 勾股定理第1課時(shí) 勾股定理:如果直角三角形的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長(zhǎng)是( ) ?a2+b2=c2
2025-07-03 12:26
2025-07-02 20:59
【摘要】第十七章 勾股定理 勾股定理第1課時(shí) 勾股定理的認(rèn)識(shí)知識(shí)點(diǎn)1知識(shí)點(diǎn)2勾股定理的證明選項(xiàng)中,不能用來(lái)證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形拼成一個(gè)大的正方形,是我國(guó)古代數(shù)學(xué)的驕傲,巧妙地利用面積關(guān)系證明了勾股定理.已
2025-06-30 12:01
【摘要】第十七章勾股定理勾股定理第3課時(shí)利用勾股定理證明與作圖學(xué)習(xí)指南知識(shí)管理歸類探究分層作業(yè)當(dāng)堂測(cè)評(píng)學(xué)習(xí)指南★本節(jié)學(xué)習(xí)主要解決以下問(wèn)題★1.利用勾股定理表示無(wú)理數(shù)此內(nèi)容為本節(jié)的重點(diǎn).為此設(shè)計(jì)了【歸類探
2025-07-06 03:18
【摘要】第2課時(shí)勾股定理(二),也可以表示,數(shù)軸上的點(diǎn)和.一一對(duì)應(yīng).(,,…)的點(diǎn).如圖所示..有關(guān)銳角三角形或鈍角三角形的計(jì)算問(wèn)題也可以轉(zhuǎn)化為含有三角形的計(jì)算問(wèn)題,應(yīng)用勾股定理加以解決,關(guān)鍵在于找出這個(gè)三角形.23無(wú)理數(shù)實(shí)數(shù)
2025-06-27 12:23
【摘要】勾股定理第2課時(shí)【基礎(chǔ)梳理】直角三角形中,根據(jù)勾股定理,已知兩邊可求第三邊:Rt△ABC中,∠C=90°,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,(1)若已知邊a,b,則c=;(2)若已知邊a,c,則b=;(3)若已知邊b,c,則a=.22ab?
【摘要】勾股定理第十七章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級(jí)數(shù)學(xué)下(RJ)教學(xué)課件第3課時(shí)利用勾股定理作圖或計(jì)算學(xué)習(xí)目標(biāo)1.會(huì)運(yùn)用勾股定理確定數(shù)軸上表示實(shí)數(shù)的點(diǎn)及解決網(wǎng)格問(wèn)題.(重點(diǎn)),并會(huì)運(yùn)用勾股定理解決相應(yīng)的折疊問(wèn)題.(難點(diǎn))
2025-07-06 05:35
【摘要】第十七章勾股定理勾股定理第2課時(shí)勾股定理的實(shí)際應(yīng)用學(xué)習(xí)指南知識(shí)管理歸類探究分層作業(yè)當(dāng)堂測(cè)評(píng)學(xué)習(xí)指南★本節(jié)學(xué)習(xí)主要解決以下問(wèn)題★勾股定理的實(shí)際應(yīng)用此內(nèi)容為本節(jié)的重點(diǎn),也是難點(diǎn).為此設(shè)計(jì)了【歸類探究】中
2025-07-01 12:10
2025-07-05 05:34
2025-06-28 14:25
【摘要】第3課時(shí)利用勾股定理作圖與計(jì)算,有的表示,因此,數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)關(guān)系.有理數(shù)無(wú)理數(shù)實(shí)2.當(dāng)直角三角形的兩直角邊長(zhǎng)分別為1,1時(shí),斜邊長(zhǎng)為2,當(dāng)兩直角邊長(zhǎng)分別為2,1時(shí),斜邊長(zhǎng)為,如圖,依此規(guī)律可以畫出表示長(zhǎng)為4,5,6?的線段.3
2025-07-01 15:14
【摘要】第2課時(shí) 勾股定理的應(yīng)用知識(shí)點(diǎn)1知識(shí)點(diǎn)2勾股定理的實(shí)際應(yīng)用樹,一棵高10?m,另一棵高4?m,兩樹相距8?鳥從一棵樹的樹梢飛到另一棵樹的樹梢,問(wèn)小鳥至少飛行(??B??)?m?m?m?m