【正文】
2與 x 成反比例,且當(dāng) x = 1 時,y = 4 ;當(dāng) x = 2 時, y = 5. (1) 求 y 與 x 的函數(shù)關(guān)系式; (2) 當(dāng) x = 4 時,求 y 的值. 解: ( 1) 設(shè) y1= k1x , y2=k2x( k1, k2為常數(shù),且 k1≠ 0 , k2≠ 0) ,則 y = k1x +k2x. ∵ x = 1 , y = 4 ; x = 2 , y = 5 , ∴????? k 1 + k 2 = 4 ,2 k 1 +k 22= 5 ,解得??? k 1 = 2 ,k 2 = 2 , ∴ y 與 x 的函數(shù)關(guān)系式為 y = 2 x +2x. (2) 當(dāng) x = 4 時, y = 2 4 +24= 812. 9 .已知函數(shù) y = (5 m - 3) x2 - n+ ( m + n ) . (1) 當(dāng) m , n 為何值時是一次函數(shù)? (2) 當(dāng) m , n 為何值時是正比例函數(shù)? (3) 當(dāng) m , n 為何值時是反比例函數(shù)? 解: ( 1) 當(dāng)函數(shù) y = (5 m - 3) x2 - n+ ( m + n ) 是一次函數(shù)時, 2 - n = 1 且 5 m - 3 ≠ 0 , 解得 n = 1 且 m ≠35. (2) 當(dāng)函數(shù) y = (5 m - 3) x2 - n+ ( m + n ) 是正比例函數(shù)時,????? 2 - n = 1 ,m + n = 0 ,5 m - 3 ≠ 0 , 解得 n = 1 , m =- 1. (3) 當(dāng)函數(shù) y = (5 m - 3) x2 - n+ ( m + n ) 是反比例函數(shù)時,????? 2 - n =- 1 ,m + n = 0 ,5 m - 3 ≠ 0 , 解得 n = 3 , m =- 3.