freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高等代數(shù)教案第一章基本概念-閱讀頁

2025-05-02 12:57本頁面
  

【正文】 余除法) 設(shè),且;那么使得 .2. 最大公因數(shù)、互素(1)最大公因數(shù)A)定義2. 設(shè),若滿足:1)且(即是與的一個(gè)公因數(shù));2)若且(即能被與的任一個(gè)公因數(shù)整除).則稱為與的一個(gè)最大公因數(shù).最大公因數(shù)的概念可推廣至有限個(gè)整數(shù).B)最大公因數(shù)的存在性(及求法) 任意個(gè)整數(shù)都有最大公因數(shù);若為的一個(gè)最大公因數(shù),則也是;的兩個(gè)最大公因數(shù)至多相差一個(gè)符號.C)性質(zhì) 設(shè)為的一個(gè)最大公因數(shù),那么使得.略證:若,則,從而對都有;若不全為0,由證明過程知結(jié)論成立. (2)互素定義3. 設(shè),若,則稱互素;一般地設(shè),若,則稱互素. 個(gè)整數(shù)互素使得.3. 素?cái)?shù)及其性質(zhì)(1)定義4. 一個(gè)正整數(shù)叫做一個(gè)素?cái)?shù),若除外沒有其他因數(shù).(2)性質(zhì)1)若是一個(gè)素?cái)?shù),則對有或.(注意轉(zhuǎn)換為語言敘述,證易;略)2)且;則可被某一素?cái)?shù)整除.3) 設(shè)是一個(gè)素?cái)?shù),若,則或.1.5 數(shù)環(huán)和數(shù)域一 教學(xué)思考1. 數(shù)環(huán)、數(shù)域是本章引入的兩個(gè)新概念,其是鑒于很多數(shù)學(xué)問題不僅與所討論的范圍(數(shù)集)有關(guān),引入了數(shù)環(huán)、數(shù)域的概念.2. 數(shù)環(huán)、數(shù)域簡而言之是分別關(guān)于加、減、乘和加、減、乘、除封閉的非空數(shù)集,這可知之聯(lián)系與區(qū)別,且由于對于不同的運(yùn)算的封閉性,可討論各自具有的簡單性質(zhì).3. 本節(jié)內(nèi)容簡潔,不難理解,需要注意的是:一、“任意數(shù)域都包含有理數(shù)域”的證法——?dú)w謬法;二、給定一個(gè)數(shù)集驗(yàn)證是否是數(shù)環(huán)、數(shù)域;三、關(guān)于數(shù)環(huán)、數(shù)域的深入的問題——因數(shù)環(huán)、數(shù)域都是數(shù)集,而集合有所謂的運(yùn)算:交、并,那么問題是數(shù)環(huán)、數(shù)域的交、并是否仍是之?從中體會“從定義出發(fā)加以驗(yàn)證”以及舉例證明的方法.二 教學(xué)過程1. 概念定義1. 設(shè)且,若對都有,則稱是一個(gè)數(shù)環(huán).定義2. 設(shè)是一個(gè)數(shù)環(huán),若1)含有一個(gè)非0數(shù);2)若且,.例子:1)整數(shù)集為數(shù)環(huán),有理數(shù)集、實(shí)數(shù)集、復(fù)數(shù)集為數(shù)域. 2)取定,令,為數(shù)環(huán). 3) 是數(shù)環(huán). 4) 是數(shù)域.2. 性質(zhì)1)設(shè)是一個(gè)數(shù)環(huán),則.2)設(shè)F是一個(gè)數(shù)域,則.3)有理數(shù)域是最小的數(shù)域(在集合包含意義下) 任何數(shù)域都包含有理數(shù)域. 5
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1