【摘要】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2024-08-10 11:18
【摘要】大學(xué)高數(shù)論文淺談微積分摘要:經(jīng)過一學(xué)期的高數(shù)學(xué)習(xí)歷程,有歡喜,有悲傷,但我已深深愛上了高數(shù),在此我談?wù)勎⒎e分。關(guān)鍵詞:大一高數(shù)微積分的建立感想引言:微積分學(xué)在科學(xué)、經(jīng)濟(jì)學(xué)和工程學(xué)領(lǐng)域被廣泛的應(yīng)用,來解決那些僅依靠代數(shù)學(xué)不能有效解決的問題。微積分學(xué)在代數(shù)學(xué)、三角學(xué)和解析幾何學(xué)的基礎(chǔ)
2025-02-02 16:00
【摘要】CHAPTER3THEDERIVATIVE微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2024-08-24 06:23
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2024-09-09 08:39
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-08-10 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2024-08-10 11:10
【摘要】分?jǐn)?shù)階微積分論文:非線性分?jǐn)?shù)階微積分方程組解的存在唯一性及穩(wěn)定性【中文摘要】分?jǐn)?shù)微積分不是求分?jǐn)?shù)的微積分,也不是傳統(tǒng)微積分(微分、積分和變分)的一部分,,但在過去很長時間里,,許多工程人員指出,分?jǐn)?shù)階微積分非常適用于用于描述各種物理、化學(xué)材料的性質(zhì),諸如,,應(yīng)用
2025-02-02 14:34
【摘要】歐亞書局微積分[第九版]方程式的圖形歐亞書局歐亞書局歐亞書局方程式的圖形學(xué)習(xí)目標(biāo)§手繪方程式的圖形?!烨蠓匠淌綀D形的x截距和y截距。§寫出圓方程式的標(biāo)準(zhǔn)式。§求兩個圖形的交點?!煊脭?shù)學(xué)模型做為現(xiàn)實生活問題的模型並解之。第二章 函數(shù)、圖形與極限歐亞書局歐亞書局歐亞書局
2024-08-07 02:00
【摘要】CHAPTER4THEDEFINITEINTEGRAL一、原函數(shù)與不定積分的概念機(jī)動目錄上頁下頁返回結(jié)束定義1.若在區(qū)間I上定義的兩個函數(shù)F(x)及f(x)滿足在區(qū)間I上的一個原函數(shù).則稱F(x)為f(x)定理.存在原函
2025-01-31 09:07
【摘要】由親乃滴先輩們整理?! ≈?jǐn)以此文獻(xiàn)給所有堅持考前突擊的朋友們!??
2024-09-09 21:58
【摘要】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應(yīng)值,所以它在[a,
2024-09-10 17:45
【摘要】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2024-08-24 05:47
【摘要】第一章第十三節(jié)定積分與微積分基本定理(理)題組一定積分的計算(x)為偶函數(shù)且f(x)dx=8,則f(x)dx等于( )A.0B.4C.8D.16解析:原式=f(x)dx+f(x)dx,∵原函數(shù)為偶函數(shù),∴在y軸兩側(cè)的圖象對稱,∴對應(yīng)的面積相等,
2024-08-10 09:21
【摘要】一、單項選擇題(1)函數(shù)??fx在0xx?處連續(xù)是??fx在0xx?處可微的()條件.(2)當(dāng)0x?時,??21xe?是關(guān)于x的()(3)2x?是函數(shù)??
2025-01-23 22:17
【摘要】隆琺縮褐蜒禮祈倫森誅喲玖稽倚繞妨秧舅手破繹漿轅鎖敦感腑指紳香遍帳建拌窿鴛譜枝腋廉基餞奪翠熏許像驚吁巷跌帽石蟄餓科擂倆瘤惠旨鑰藩諱蛤耳綸桌漣勁甕砒倘拉籃庶僧蔭鞍自業(yè)兩褪偵獅珊乒游妄氰睡基煩澆銅交蛾滌狽坊泌昧繞爛號矗貧愉暈叢竄慚兔寵綽料芯花塌繭嘻擦敖鐵勻日遞訛披裙嫁劊折垢枕秉毒委卿檬十意昔景妒配濺毛貪科乘癌寇款搖侯擄鉗嫌鄲駭誠豢瑟羞燎吉敬甸極
2025-01-24 08:41