【正文】
0t( - x2+ 2 ax )d x -12t2+12( - t2+ 2 at - t2) ( a - t ) ( 2) f ′ ( t ) =12t2- 2 at + a2, 令 f ′ ( t ) = 0 , 即12t2- 2 at + a2= 0 , 解得 t= (2 - 2 ) a 或 t= (2 + 2 ) a . ∵ 0 t≤ 1 , a 1 , ∴ t= (2 + 2 ) a 應(yīng)舍去. 若 (2 - 2 ) a ≥ 1 , 即 a ≥12 - 2=2 + 22時 , ∵ 0 t≤ 1 , ∴ f ′ ( t ) ≥ 0. ∴ f ( t ) 在區(qū)間 ( 0,1] 上單調(diào)遞增, S 的最大值是 f ( 1) = a2- a +16. 若 (2 - 2 ) a 1 ,即 1 a 2 + 22時, 當 0 t ( 2 - 2 ) a 時, f ′ ( t ) 0 , 當 (2 - 2 ) a t≤ 1 時, f ′ ( t ) 0. ∴ f ( t ) 在區(qū)間 (0 , (2 - 2 ) a ) 上單調(diào)遞增,在區(qū)間 ((2 -2 ) a, 1] 上單調(diào)遞減. ∴ f ( t ) 的最大值是 f [(2 - 2 ) a ] =16[(2 - 2 ) a ]3- a [(2 -2 ) a ]2+ a2(2 - 2 ) a =2 2 - 23a3. 綜上所述, [ f ( t )]m a x=??????? a2- a +16 a ≥2 + 222 2 - 23a3 1 a 2 + 22. 已知 f ( x ) 為二次函數(shù),且 f ( - 1) = 2 , f ′ ( 0 ) = 0 ,????01f ( x )d x =- 2 , ( 1) 求 f ( x ) 的解析式; ( 2) 求 f ( x ) 在 [ - 1,1] 上的最大值與最小值. 解析: ( 1) 設(shè) f ( x ) = ax2+ bx + c ( a ≠ 0) , 則 f ′ ( x ) = 2 ax + b . 由 f ( - 1) = 2 , f ′ ( 0) = 0 ,得 ????? a - b + c = 2b = 0,即????? c = 2 - ab = 0, ∴ f ( x ) = ax2+ (2 - a ) . 又????01f ( x )d x =????01[ ax2+ (2 - a ) ] d x = [13ax3+ (2 - a ) x ]|10= 2 -23a =- 2 , ∴ a = 6 ,從而 f ( x ) = 6 x2- 4. ( 2) ∵ f ( x ) = 6 x2- 4 , x ∈ [ - 1,1] . ∴ 當 x = 0 時, f ( x )m i n=- 4 ; 當 x =