【摘要】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關系五、小結思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2024-09-19 12:41
【摘要】一、高階導數(shù)的定義二、高階導數(shù)的求導法則三、小結思考題第三節(jié)高階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-19 12:37
【摘要】一、正項級數(shù)及其審斂法二、小結思考題第二節(jié)正項級數(shù)及其審斂法一、正項級數(shù)及其審斂法??01????nnnuu級數(shù)有界部分和數(shù)列收斂正項級數(shù)}{1nnnsu????定理1(比較審斂法)若???1nnv收斂,則???1nnu
2024-09-09 16:41
【摘要】一、集合的概念二、集合的運算三、區(qū)間與鄰域第一節(jié)集合四、小結思考題一、集合的概念(set):具有確定性質的對象的總體.組成集合的每一個對象稱為該集合的元素.,Ma?.Ma?例如:太陽系的九大行星;教室里的所有同學。如果a是集合M中的元素,則記作
【摘要】一、羅爾定理二、拉格朗日中值定理四、小結思考題三、柯西中值定理第一節(jié)中值定理一、羅爾(Rolle)定理羅爾(Rolle)定理如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),在開區(qū)間),(ba內可導,且在區(qū)間端點的函數(shù)值相等,即)()(bfaf?,那末在),(ba內至少有一點)
2024-09-19 12:46
【摘要】主要內容典型例題第十章微分方程與差分方程習題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結構相關定理二階常系數(shù)線性方程解的結構特征方程的根及其對應項f(x)的形式及其特解形式高階方程待
2024-09-09 16:42
【摘要】一、偏導數(shù)的定義及其計算方法二、偏導數(shù)的幾何意義及函數(shù)偏導數(shù)存在與函數(shù)連續(xù)的關系三、高階偏導數(shù)第二節(jié)偏導數(shù)及其在經濟分析中的應用五、小結思考題四、偏導數(shù)在經濟分析中的應用交叉彈性定義設函數(shù)),(yxfz?在點),(00yx的某一鄰域內有定義,
2024-09-09 16:43
【摘要】一、差分的概念二、差分方程的概念三、常系數(shù)線性差分方程解的結構第六節(jié)差分與差分方程的概念常系數(shù)線性差分方程解的結構四、小結一、差分的概念.Δ,)1()()1()0(:).(111210xxxxxxxyyyyyyyyyyyxfxfffxxfy???
【摘要】一、基本內容二、小結三、思考題第三節(jié)分部積分法問題d?xxex??解決思路利用兩個函數(shù)乘積的求導法則.設函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????dd,uvxuvuvx??????dd.uvuvvu????
2024-09-19 12:44
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應用三、旋轉體的體積四、平行截面面積已知的立體的體積五、小結回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
【摘要】一、分部積分公式二、小結思考題第五節(jié)定積分的分部積分法設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導??,vuvuuv???????()d,bbaauvxuv?????d
【摘要】一、平面及其方程二、直線及其方程三、小結思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內的任一向量.已知},,,{CBAn??),,,(000
【摘要】一、夾逼準則二、單調有界收斂準則四、小結思考題極限存在準則兩個重要極限第五節(jié)三、連續(xù)復利連續(xù)復利一、夾逼準則準則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2024-09-19 12:38
【摘要】一、問題的提出二、Pn和Rn的確定四、簡單應用五、小結思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問題的提出1.設)(xf在0x處連續(xù),則有2.設)(xf在0x處可導,則有例如,當x很小時,xex??1,xx??)1ln([???)
【摘要】一、函數(shù)極限的定義三、小結思考題二、函數(shù)極限的性質第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數(shù)值任意接近于有限值自