【摘要】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會應用。教學重點:兩角差的余弦公式結(jié)構(gòu)及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-28 22:40
【摘要】名稱簡記符號公式使用條件兩角和的余弦兩角差的余弦+C??()C???()cos()coscossinsin?????????cos()coscossinsin?????????,R???,R???名
2024-12-24 18:51
【摘要】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-12-07 19:44
【摘要】【優(yōu)化指導】2021年高中數(shù)學兩角和與差的正弦、余弦、正切公式(一)課時跟蹤檢測新人教A版必修4知識點及角度難易度及題號基礎中檔稍難三角函數(shù)式的化簡求值1、510條件求值問題46、7、8綜合問題2、39、11121.若sin(α+β)cosβ-cos(α
2024-12-29 03:40
【摘要】【優(yōu)化指導】2021年高中數(shù)學兩角和與差的正弦、余弦、正切公式(二)學業(yè)達標測試新人教A版必修41.若tan??????π4+α=3,則tanα的值為()A.-2B.-12D.2解析:tan??????π4+α=3,即1+tanα1-tanα=3,解得tanα
【摘要】【優(yōu)化指導】2021年高中數(shù)學兩角和與差的正弦、余弦、正切公式(一)學業(yè)達標測試新人教A版必修41.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos
【摘要】第5講 兩角和與差的正弦、余弦和正切[考綱]1.會用向量的數(shù)量積推導出兩角差的余弦公式.2.能利用兩角差的余弦公式導出兩角差的正弦、正切公式.3.能利用兩角差的余弦公式導出兩角和的正弦、余弦、正切公式,導出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.知識梳
2024-08-23 23:52
【摘要】 兩角和與差的正弦、余弦、正切公式(一)[學習目標] 、余弦公式進行簡單的三角函數(shù)的求值、化簡、、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.知識點一 兩角和與差的余弦公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ.思考 你能根據(jù)兩角差的余弦公式
2025-07-04 18:47
【摘要】兩角和與差的正弦、余弦、正切公式說課人:芮平東華高級中學數(shù)學組普通高中課程標準實驗教科書數(shù)學四必修?兩角和與差的正弦、余弦、正切公式(第二課時)一、教材分析本節(jié)課是普通高中課程標準實驗教科書數(shù)學4(必修)第三章第一節(jié)第二課時,本課既是
2024-11-03 08:50
【摘要】第一篇:《兩角和與差的正弦余弦和正切公式》教學設計(范文) 三角函數(shù)式的化簡 化簡要求: 1)能求出值應求值? 2)使三角函數(shù)種類最少 3)項數(shù)盡量少 4)盡量使分母中不含三角函數(shù) 5)...
2024-10-13 04:35
【摘要】、余弦、正切公式2020、12、24一、復習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導??)cos(??)](cos[???????
2024-12-08 12:17
【摘要】兩角和差的正弦余弦正切公式練習題知識梳理1.兩角和與差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β.cos(α?β)=cos_αcos_β±sin_αsin_β.tan(α±β)=.2.二倍角的正弦、余弦、正切公式sin2α=2sin_αcos_α.cos2α=cos2α-
2025-07-08 16:45
【摘要】兩角和與差的正弦、余弦、正切公式新課導入想一想:cos15????????30sin45sin30cos45cos42621222322??????那呢?cos75cos15cos(4530)??cos75?cos(3
2025-06-21 00:45
【摘要】《兩角差的余弦公式》教學設計 () 一、教學分析 本節(jié)內(nèi)容是三角函數(shù)線和誘導公式等知識的延伸,是兩角和與差的正弦、余弦、正切,以及二倍角公式等知識的基礎。對三角變換、三角恒等式的證明和三角函...
2025-04-03 03:35
【摘要】學案5兩角和與差的正弦、余弦、正切考綱解讀考綱解讀考向預測考向預測考點突破考點突破即時鞏固即時鞏固規(guī)律探究規(guī)律探究課前熱身課前熱身真題再現(xiàn)真題再現(xiàn)誤區(qū)警示誤區(qū)警示考點考點一一考點考點二二課后拔高課后拔高考點考點三三返回考綱解讀考綱解讀返回考向預測考向預測返回課前熱身課前熱身返回返
2025-03-08 10:44