freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

廣州中考數(shù)學(xué)易錯題專題復(fù)習(xí)-二次函數(shù)練習(xí)題-閱讀頁

2025-04-01 04:04本頁面
  

【正文】 m,點P為對角線AC上的一點,且AP=.如圖①,動點M從點A出發(fā),在矩形邊上沿著的方向勻速運動(不包含點C).設(shè)動點M的運動時間為t(s),的面積為S(cm178。(2)如圖③,動點M重新從點A出發(fā),在矩形邊上,另一個動點N從點D出發(fā),在矩形邊上沿著的方向勻速運動,、N經(jīng)過時間在線段BC上相遇(不包含點C),動點M、N相遇后立即停止運動,記此時的面積為.①求動點N運動速度的取值范圍。=2;()2=10 (2)①解:在C點相遇得到方程在B點相遇得到方程 ∴ 解得 ∵在邊BC上相遇,且不包含C點 ∴②如下圖 =15過M點做MH⊥AC,則 ∴ ∴ = = 因為,所以當(dāng)時,取最大值.【點睛】本題重點考查動點問題,二次函數(shù)的應(yīng)用,求不規(guī)則圖形的面積等知識點,第一問關(guān)鍵能夠從圖像中得到信息,第二問第一小問關(guān)鍵在理清楚運動過程,第二小問關(guān)鍵在能夠用x表示出S1和S213.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設(shè)出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點坐標為(,),即當(dāng)E點坐標為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.14.如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)?!敬鸢浮浚?)(2)(3)P的坐標為(-1,12)或(6,5)或(2,-3)或(3,-4)【解析】【分析】(1)由B(5,0),C(0,5),應(yīng)用待定系數(shù)法即可求直線BC與拋物線的解析式。(3)根據(jù)S1=6S2求得BC與PQ的距離h,從而求得PQ由BC平移的距離,根據(jù)平移的性質(zhì)求得PQ的解析式,與拋物線聯(lián)立,即可求得點P的坐標。∴直線BC的解析式為。∴拋物線的解析式?!唿cN是直線BC上與點M橫坐標相同的點,∴N。∴。(3)當(dāng)MN取得最大值時,N?!郃B=4。由勾股定理可得。如圖,過點B作平行四邊形CBPQ的高BH,過點H作x軸的垂線交點E ,則BH=,EH是直線BC沿y軸方向平移的距離。∴直線BC沿y軸方向平移6個單位得PQ的解析式:或。此時,點P的坐標為(-1,12)或(6,5)。此時,點P的坐標為(2,-3)或(3,-4)。15.如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.(1)求這個二次函數(shù)的表達式;(2)點P是直線BC下方拋物線上的一動點,求△BCP面積的最大值;(3)直線x=m分別交直線BC和拋物線于點M,N,當(dāng)△BMN是等腰三角形時,直接寫出m的值.【答案】(1)這個二次函數(shù)的表達式是y=x2﹣4x+3;(2)S△BCP最大=;(3)當(dāng)△BMN是等腰三角形時,m的值為,﹣,1,2.【解析】分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PE的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;(3)根據(jù)等腰三角形的定義,可得關(guān)于m的方程,根據(jù)解方程,可得答案.詳解:(1)將A(1,0),B(3,0)代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達式是y=x24x+3;(2)當(dāng)x=0時,y=3,即點C(0,3),設(shè)BC的表達式為y=kx+b,將點B(3,0)點C(0,3)代入函數(shù)解析式,得,解這個方程組,得 直線BC的解析是為y=x+3,過點P作PE∥y軸,交直線BC于點E(t,t+3),PE=t+3(t24t+3)=t2+3t,∴S△BCP=S△BPE+SCPE=(t2+3t)3=(t)2+,∵<0,∴當(dāng)t=時,S△BCP最大=.(3)M(m,m+3),N(m,m24m+3)MN=m23m,BM=|m3|,當(dāng)MN=BM時,①m23m=(m3),解得m=,②m23m=(m3),解得m=當(dāng)BN=MN時,∠NBM=∠BMN=45176。(m24m+3)=m+3,解得m=2或m=3(舍),當(dāng)△BMN是等腰三角形時,m的值為,,1,2.點睛:本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于m的方程,要分類討論,以防遺漏.
點擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1