freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學易錯題精選-二次函數(shù)練習題及答案解析-閱讀頁

2025-03-30 22:21本頁面
  

【正文】 +(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴點P的坐標為(5,-5).(4)或5.提示:①當以M為直角頂點,則S△CMN=;②當以N為直角頂點,S△CMN=5;③當以C為直角頂點時,此種情況不存在.【點睛】本題是二次函數(shù)的綜合題,主要考查待定系數(shù)法求解析式,三角形面積、直角三角形的判定等,能正確地根據(jù)題意確定圖形,分情況進行討論是解題的關鍵.7.已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上(1)求拋物線的解析式;(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.【答案】(1)拋物線的解析式為y=x2﹣x;(2)證明見解析;(3)當運動時間為或秒時,QM=2PM.【解析】【分析】(1)(1)A,B的坐標代入拋物線y=ax2+bx中確定解析式;(2)把A點坐標代入所設的AF的解析式,與拋物線的解析式構(gòu)成方程組,解得G點坐標,再通過證明三角形相似,得到同位角相等,兩直線平行;(3)具體見詳解.【詳解】.解:(1)將點A(﹣1,2)、B(3,6)代入中, ,解得: ,∴拋物線的解析式為y=x2﹣x. (2)證明:設直線AF的解析式為y=kx+m,將點A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直線AF的解析式為y=(m﹣2)x+m.聯(lián)立直線AF和拋物線解析式成方程組, ,解得: 或 ,∴點G的坐標為(m,m2﹣m).∵GH⊥x軸,∴點H的坐標為(m,0).∵拋物線的解析式為y=x2﹣x=x(x﹣1),∴點E的坐標為(1,0).過點A作AA′⊥x軸,垂足為點A′,如圖1所示.∵點A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE. (3)設直線AB的解析式為y=k0x+b0,將A(﹣1,2)、B(3,6)代入y=k0x+b0中,得 ,解得: ,∴直線AB的解析式為y=x+3,當運動時間為t秒時,點P的坐標為(t﹣3,t),點Q的坐標為(t,0).當點M在線段PQ上時,過點P作PP′⊥x軸于點P′,過點M作MM′⊥x軸于點M′,則△PQP′∽△MQM′,如圖2所示,∵QM=2PM,∴ =,∴QM′=QP39。=t,∴點M的坐標為(t﹣2, t).又∵點M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當點M在線段QP的延長線上時,同理可得出點M的坐標為(t﹣6,2t),∵點M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當運動時間秒 或 時,QM=2PM. 【點睛】本題考查二次函數(shù)綜合運用,綜合能力是解題關鍵.8.如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.【答案】(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為 (3)或時,△BDM為直角三角形.【解析】【分析】(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面積的表達式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90176。時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴ S△PBC = S△POC+ S△BOP–S△BOC=.∵0,∴當時,S△PBC最大值為.(3)由C2可知: B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD90176。和∠BDM=90176。時,BM2+ DM2= BD2,即+=,解得:,(舍去).當∠BDM=90176。即OM為y=x,若∠AOM=∠CBA,則OM為y=3x+3,然后由直線解析式可求OM與AD的交點M.【詳解】(1)把A(﹣3,0),B(1,0),C(0,3)代入拋物線解析式y(tǒng)=ax2+bx+c得,解得,所以拋物線的函數(shù)表達式為y=﹣x2﹣2x+3.(2)如解(2)圖1,過P點作PQ平行y軸,交AC于Q點,∵A(﹣3,0),C(0,3),∴直線AC解析式為y=x+3,設P點坐標為(x,﹣x2﹣2x+3.),則Q點坐標為(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=,∴,解得:x1=﹣1,x2=﹣2.當x=﹣1時,P點坐標為(﹣1,4),當x=﹣2時,P點坐標為(﹣2,3),綜上所述:若△PAC面積為3,點P的坐標為(﹣1,4)或(﹣2,3),(3)如解(3)圖1,過D點作DF垂直x軸于F點,過A點作AE垂直BC于E點,∵D為拋物線y=﹣x2﹣2x+3的頂點,∴D點坐標為(﹣1,4),又∵A(﹣3,0),∴直線AC為y=2x+4,AF=2,DF=4,tan∠PAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直線BC解析式為y=﹣3x+3.∵AC=4,∴AE=AC?sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,如解(3)圖2Ⅰ.當∠AOM=∠CAB=45176。∴∠CBD=9017
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1