【摘要】圓中的最值問(wèn)題【考題展示】題1(2012年武漢中考)在坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C是第一象限內(nèi)一點(diǎn),且AC=2.設(shè)tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調(diào))如圖,在邊長(zhǎng)為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長(zhǎng)為半徑作⊙O,C為半圓弧上的一個(gè)動(dòng)點(diǎn)(不與A、B兩點(diǎn)重合),射線AC交
2025-05-12 00:00
【摘要】第1頁(yè)共3頁(yè)中考數(shù)學(xué)幾何中的最值問(wèn)題綜合測(cè)試卷一、單選題(共7道,每道10分),圓柱形玻璃杯,高為12cm,底面周長(zhǎng)為18cm,在杯內(nèi)離杯底5cm的點(diǎn)C處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿5cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最短距離為()cmA.C.
2024-10-14 19:01
【摘要】......橢圓中的最值問(wèn)題與定點(diǎn)、定值問(wèn)題解決與橢圓有關(guān)的最值問(wèn)題的常用方法(1)利用定義轉(zhuǎn)化為幾何問(wèn)題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學(xué)表達(dá)式的幾何特征進(jìn)而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-05-12 04:50
【摘要】......橢圓中的常見(jiàn)最值問(wèn)題1、橢圓上的點(diǎn)P到二焦點(diǎn)的距離之積取得最大值的點(diǎn)是橢圓短軸的端點(diǎn),取得最小值的點(diǎn)在橢圓長(zhǎng)軸的端點(diǎn)。例1、橢圓上一點(diǎn)到它的二焦點(diǎn)的距離之積為,則取得的最大值時(shí),P點(diǎn)的坐標(biāo)是
【摘要】解析幾何中的定值問(wèn)題1、(2014安徽高考)如圖,已知兩條拋物線,過(guò)點(diǎn)的三條直線、和.與和分別交于兩點(diǎn),與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設(shè)直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點(diǎn)坐標(biāo)面積公式得:,,所以=為定值.注:(1)設(shè)?ABC三頂點(diǎn)的坐標(biāo)分別為,則;(2)原解答包含
2024-09-15 16:44
【摘要】解析幾何中的定點(diǎn)和定值問(wèn)題【教學(xué)目標(biāo)】學(xué)會(huì)合理選擇參數(shù)(坐標(biāo)、斜率等)表示動(dòng)態(tài)圖形中的幾何對(duì)象,探究、證明其不變性質(zhì)(定點(diǎn)、定值等),體會(huì)“設(shè)而不求”、“整體代換”在簡(jiǎn)化運(yùn)算中的作用.【教學(xué)難、重點(diǎn)】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過(guò)程】一、基礎(chǔ)練習(xí)1、過(guò)直線上動(dòng)點(diǎn)作圓的切線,則兩切點(diǎn)所在直線恒過(guò)一定點(diǎn).此定點(diǎn)的坐標(biāo)為_(kāi)________.【答案】【解
2024-07-29 18:55
【摘要】直線與圓二、弦長(zhǎng)公式:直線與二次曲線相交所得的弦長(zhǎng)1直線具有斜率,直線與二次曲線的兩個(gè)交點(diǎn)坐標(biāo)分別為,則它的弦長(zhǎng)注:實(shí)質(zhì)上是由兩點(diǎn)間距離公式推導(dǎo)出來(lái)的,只是用了交點(diǎn)坐標(biāo)設(shè)而不求的技巧而已(因?yàn)椋\(yùn)用韋達(dá)定理來(lái)進(jìn)行計(jì)算.2當(dāng)直線斜率不存在是,則.三、過(guò)兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-05-12 06:29
【摘要】......圓錐曲線中的最值問(wèn)題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個(gè)焦點(diǎn),AB為過(guò)其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-05-12 00:03
【摘要】圓錐曲線中的最值問(wèn)題復(fù)習(xí)1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點(diǎn)M(1,3),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓上的任意一點(diǎn),求:①∣AM│+∣AF2│
2024-09-26 02:08
2024-09-14 15:01
【摘要】直線中的最值問(wèn)題基礎(chǔ)卷一.選擇題:1.設(shè)-π≤α≤π,點(diǎn)P(1,1)到直線xcosα+ysinα=2的最大距離是(A)2-(B)2+(C)2(D)2.點(diǎn)P為直線x-y+4=0上任意一點(diǎn),O為原點(diǎn),則|OP|的最小值為(A)(B)(C)2(D)23.已知兩點(diǎn)P(cosα,sinα),Q(cosβ,sinβ),則|PQ|的最大值
【摘要】WORD資料可編輯高三數(shù)學(xué)專(zhuān)題復(fù)習(xí)圓錐曲線中的最值問(wèn)題和范圍的求解策略最值問(wèn)題是圓錐曲線中的典型問(wèn)題,它是教學(xué)的重點(diǎn)也是歷年高考的熱點(diǎn)。解決這類(lèi)問(wèn)題不僅要緊緊把握?qǐng)A錐曲線的定義,而且要善于綜合應(yīng)用代數(shù)、平幾、三角等相關(guān)知識(shí)。以下從五個(gè)方面予以闡述。一.求距離的最
2025-05-11 05:53
【摘要】圓錐曲線中的最值及范圍問(wèn)題課時(shí)考點(diǎn)14高三數(shù)學(xué)備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關(guān)系.高考熱點(diǎn):解析幾何與代數(shù)方法的綜合.熱點(diǎn)題型1:重要不等式求最值新題型分類(lèi)例析熱點(diǎn)題型2:利用函數(shù)求最值熱點(diǎn)題型3:利用導(dǎo)數(shù)求最值熱點(diǎn)題型4:利用判別
2025-01-09 16:44
【摘要】隱圓及幾何最值訓(xùn)練題一、利用“直徑是最長(zhǎng)的弦”求最值,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E在AB邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A重合),過(guò)A、D、E三點(diǎn)作⊙O,⊙O交AC于另一點(diǎn)F,在此運(yùn)動(dòng)變化的過(guò)程中,線段EF長(zhǎng)度的最小值為().,在△ABC中,∠ABC=90°,AB=6,BC=8,D為A
2025-05-13 05:12
【摘要】解析幾何中的幾類(lèi)定值問(wèn)題浙江省諸暨中學(xué)邵躍才311800求定值是解析幾何中頗有難度的一類(lèi)問(wèn)題,由于它在解題之前不知道定值的結(jié)果,因而更增添了題目的神秘色彩。解決這類(lèi)問(wèn)題時(shí),要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動(dòng)點(diǎn)的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開(kāi)神秘的面紗,這樣可將盲目的探索問(wèn)題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解
2024-11-05 17:25