【總結(jié)】平面向量中的最值問題淺析耿素蘭山西平定二中(045200)平面向量中的最值問題多以考查向量的基本概念、基本運算和性質(zhì)為主,解決此類問題要注意正確運用相關(guān)知識,合理轉(zhuǎn)化。一、利用函數(shù)思想方法求解例1、給定兩個長度為1的平面向量和,,,則的最大值是________.圖11分析:尋求刻畫點變化的變量,建立目標(biāo)與此變量的函數(shù)關(guān)系是解決最值問題的常用途徑。解
2025-03-25 01:21
【總結(jié)】平面幾何中的定值問題開場白:同學(xué)們,動態(tài)幾何類問題是近幾年中考命題的熱點,題目靈活、多變,能夠全面考查同學(xué)們的綜合分析和解決問題的能力。這類問題中就有一類是定值問題,下面我們來看幾道題:【問題1】已知一等腰直角三角形的兩直角邊AB=AC=1,P是斜邊BC上的一動點,過P作PE⊥AB于E,PF⊥AC于F,則PE+PF=。方法1:特殊值法:把P點放在特殊的B點或C
2025-03-24 12:35
【總結(jié)】........解析幾何中的定值定點問題(一)一、定點問題【例1】.已知橢圓:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
2025-03-25 07:47
【總結(jié)】........解析幾何中的定點定值問題考綱解讀:定點定值問題是解析幾何解答題的考查重點。此類問題定中有動,動中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
【總結(jié)】WORD資料可編輯圓錐曲線中的最值取值范圍問題=l(a0,b0)的左、右焦點,P為雙曲線上的一點,若,且的三邊長成等差數(shù)列.又一橢圓的中心在原點,短軸的一個端點到其右焦點的距離為,雙曲線與該橢圓離心率之積為。(I)求橢圓的方程;(
2025-03-25 00:02
【總結(jié)】2017-9-2初中幾何中的最短路徑與最值問題初二幾何中的最短路徑與最值問題例:已知:如圖,A,B在直線L的兩側(cè),在L上求一點P,使得PA+PB最小。解:連接AB,線段AB與直線L的交點P,就是所求。(根據(jù):兩點之間線段最短.)例:圖所示,要在街道旁修建一個奶站,向居民區(qū)A、B提供牛奶,奶站應(yīng)建在什么地方,才能使從A、B到它的距離之和最短.例:已知:如圖A
2025-03-24 02:14
【總結(jié)】例1、已知直線y=x和兩定點A(1,1),B(2,2)在此直線上取一點P,使|PA|2+|PB|2最小,求點P的坐標(biāo)。21解:設(shè)P(x,y),則xy21?又|PA|2+|PB|2=(x-1)2+(y-1)2+(x-2)2+(y-2)21019)109
2024-11-09 03:30
【總結(jié)】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學(xué)科網(wǎng)ZXXK]①當(dāng)時,不等式(*)②當(dāng)
2025-03-24 23:42
【總結(jié)】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對每個實數(shù)x,設(shè)f(x)是y=2
2024-11-07 00:41
【總結(jié)】27幾何最值與勾股定理(1)常見經(jīng)典幾何最值模型1、如圖,點A和點B是直線L上的兩定點,,且,,點P為直線L上的動點(1)求的最小值(2)求的最大值2、已知在平面直角坐標(biāo)系中,,若為軸上兩動點(點在點右側(cè)),且,求四邊形周長的最小值.
2025-06-19 07:40
【總結(jié)】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2025-07-25 00:14
【總結(jié)】中考數(shù)學(xué)幾何最值問題解法在平面幾何的動態(tài)問題中,當(dāng)某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應(yīng)用兩點間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它
2025-04-04 03:00
【總結(jié)】......第42課三角形中的最值問題考點提要1.掌握三角形的概念與基本性質(zhì).2.能運用正弦定理、余弦定理建立目標(biāo)函數(shù),解決三角形中的最值問題.基礎(chǔ)自測1.(1)△ABC中,,則A的值為30°或90&
2025-03-24 05:43
【總結(jié)】數(shù)列的最值問題及單調(diào)數(shù)列問題求等差數(shù)列前n項和最值的兩種方法(1)函數(shù)法:利用等差數(shù)列前n項和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解.(2)鄰項變號法①時,滿足的項數(shù)m使得取得最大值為;②當(dāng)時,滿足的項數(shù)m使得取得最小值為.例1、在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當(dāng)n取何值時,Sn取得最大值,并求出它
2025-03-25 02:51
【總結(jié)】數(shù)學(xué)組卷圓的最值問題 一.選擇題(共7小題)1.(2014春?興化市月考)在平面直角坐標(biāo)系中,點A的坐標(biāo)為(3,0),點B為y軸正半軸上的一點,點C為第一象限內(nèi)一點,且AC=2,設(shè)tan∠BOC=m,則m的取值范圍是( )A.m≥0 B. C. D. 2.(2013?武漢模擬)如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動點,以P為圓
2025-06-23 18:44