【摘要】第一篇:證明不等式的幾種常用方法 證明不等式的幾種常用方法 摘要:不等式由于結(jié)構(gòu)形式的多樣化化,證明方式也是靈活多樣,但都是圍繞著比較法、綜合法、、:不等式證明;比較法;綜合法;分析法 引言:不...
2024-10-29 06:39
【摘要】2021/1/61高中數(shù)學(xué)復(fù)習(xí)課代數(shù)第五章不等式第一課時(shí)[知識要點(diǎn)]本章的知識要點(diǎn)包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點(diǎn)間和內(nèi)在
2025-02-02 12:27
【摘要】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原
2024-07-18 23:55
【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-02-23 16:33
【摘要】精品資源證明不等式的幾種常用方法證明不等式除了教材中介紹的三種常用方法,即比較法、綜合法和分析法外,在不等式證明中,不僅要用比較法、綜合法和分析法,根據(jù)有些不等式的結(jié)構(gòu),恰當(dāng)?shù)剡\(yùn)用反證法、換元法或放縮法還可以化難為易.下面幾種方法在證明不等式時(shí)也經(jīng)常使用.一、反證法如果從正面直接證明,有些問題確實(shí)相當(dāng)困難,容易陷入多個元素的重圍之中,而難以自拔,此時(shí)可考慮用間接法予以證明,反證法
2025-05-26 04:10
【摘要】第一篇:高中數(shù)學(xué)知識點(diǎn):不等式的證明及應(yīng)用 不等式的證明及應(yīng)用 知識要點(diǎn): 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【摘要】第一篇:2012高中數(shù)學(xué)單元訓(xùn)練不等式的證明(二) 課時(shí)訓(xùn)練37不等式的證明 (二)【說明】本試卷滿分100分,、選擇題(每小題6分,共42分) a2b 2+<x<1,a、b為正常數(shù),的最小值...
2024-11-05 06:07
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2024-09-02 17:21
【摘要】為您服務(wù)教育網(wǎng)·易做易錯題選不等式部分一、選擇題:1.(如中)設(shè)若0f(b)f(c),則下列結(jié)論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯解原因是沒有數(shù)形結(jié)合意識,正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設(shè)成立的充分
2025-03-03 11:11
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-05-22 05:10
【摘要】不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原不等式等價(jià)于:1-a,即&
2025-05-22 05:05
【摘要】第一篇:放縮法證明數(shù)列不等式經(jīng)典例題 放縮法證明數(shù)列不等式 主要放縮技能:=2=-nn+1n(n+1)nn(n-1)n-1n 114411===2(-) 22n4n-1(2n+1)(2n...
2024-10-28 01:13
【摘要】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
【摘要】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-05-12 02:44
【摘要】第一篇:比較法證明不等式高中數(shù)學(xué)選修2-3 & 陳嬌 【教學(xué)目標(biāo)】 掌握兩個實(shí)數(shù)的大小與它們的差值的等價(jià)關(guān)系以及理解并掌握比較法的一般步驟。 掌握運(yùn)用比較法證明一些簡單的不等式的方法...
2024-11-06 07:13