freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理證明-在線瀏覽

2024-11-04 18:24本頁(yè)面
  

【正文】 ~公元前497?)于公元前550年首先發(fā)現(xiàn)的。所謂勾股定理,就是指“在直角三角形中,兩條直角邊的平方和等于斜邊的平方。第一篇:勾股定理證明勾股定理的歷史及證明勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”,是初等幾何中的一個(gè)基本定理。那么大家知道多少勾股定理的別稱呢?我可以告訴大家,有:畢達(dá)哥拉斯定理,商高定理,百牛定理,驢橋定理和埃及三角形等?!边@個(gè)定理有十分悠久的歷史,幾乎所有文明古國(guó)(希臘、中國(guó)、埃及、巴比倫、印度等)對(duì)此定理都有所研究。但畢達(dá)哥拉斯對(duì)勾股定理的證明方法已經(jīng)失傳。(下圖為歐幾里得和他的證明圖)中國(guó)古代對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。其中有一條原理:當(dāng)直角三角形?矩39。等于3,另一條直角邊?股39。弦39。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來(lái)的呵。其中所說(shuō)的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例。在稍后一點(diǎn)的《九章算術(shù)》一書(shū)中(約在公元50至100年間),勾股定理得到了更加規(guī)范的一般性表達(dá)。中國(guó)古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明(右圖)。尤其是其中體現(xiàn)出來(lái)的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。1ab+c22第二篇:如何證明勾股定理如何證明勾股定理勾股定理是初等幾何中的一個(gè)基本定理。一、傳說(shuō)中畢達(dá)哥拉斯的證法(圖1)左邊的正方形是由1個(gè)邊長(zhǎng)為的正方形和1個(gè)邊長(zhǎng)為的正方形以及4個(gè)直角邊分別為、斜邊為的直角三角形拼成的。因?yàn)檫@兩個(gè)正方形的面積相等(邊長(zhǎng)都是),所以可以列出等式,化簡(jiǎn)得。二、趙爽弦圖的證法(圖2)第一種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、斜邊為 的直角三角形圍在外面形成的。第二種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、斜邊為 的角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為的正方形“小洞”。這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。因?yàn)?個(gè)直角三角形的面積之和等于梯形的面積,所以可以列出等式,化簡(jiǎn)得。第三篇:勾股定理 專題證明勾股定理 專題證明:若一個(gè)四邊形中存在一組相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊。得到 △DBE,連結(jié)AD,DC,∠DCB=30176。AD=AB ,點(diǎn)E是AB邊上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),連結(jié)ED,過(guò)ED的中點(diǎn)F作ED的垂線,
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1