freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理說課稿及擴(kuò)展資料-在線瀏覽

2024-11-04 17:57本頁面
  

【正文】 :引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的39。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。例2.()思路點(diǎn)撥:廠門的寬度是足夠的,這個問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時其高度是否小于CH,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,CD= = =,CH=+= 。三、課堂小練課本P58練習(xí)第1,2題。五、布置作業(yè),2,3題。一、教材分析(一) 教材地位和作用勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。而且它在其它自然學(xué)科中也常常用到。(二)教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):知識與技能方面了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡單應(yīng)用。情感態(tài)度與價值觀方面(1)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。(三)教學(xué)重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):掌握勾股定理,并能用它來解決一些簡單的問題。二、學(xué)情分析我們班日常經(jīng)常使用多媒體輔助教學(xué)。部分學(xué)生解題思維能力比較高,能夠正確 歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。三、教法選擇根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。本節(jié)課采用了多媒體輔 助教學(xué),能夠直觀、生動的反應(yīng)圖形,增加課堂的容量,同時有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會觀察、類比、分析、從特殊到一般等數(shù)學(xué)思 想。五、教學(xué)過程根據(jù)《新課標(biāo)》中“要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動中”的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計的:(一)創(chuàng)設(shè)情境,引入新課一個設(shè)計合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。我設(shè)計了以下題目:星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,∠ACB=90176。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):了解勾股定理的文化背景,體驗勾股定理的探索過程。(二)勾股定理的探索猜想結(jié)論(1)探究一:等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過計算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?()探究二:一般的直角三角形三邊關(guān)系。學(xué)生自主探究,通過計算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。教師在多媒體課件上直觀地演示。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。學(xué)生分組活動,根據(jù)圖形的面積進(jìn)行計算,推導(dǎo)出勾股定理的一般形式:a + b = c。簡要介紹勾股定理命名的由來我國是最早了解勾股定理的國家之一。設(shè)計意圖:對比以上事實(shí)對學(xué)生進(jìn)行愛國主義教育,激勵他們奮發(fā)向上。體會數(shù)學(xué)在實(shí)際生活中的應(yīng)用。(連接AC)(2)知道直角△ABC的那條邊?(3)知道直角三角形兩條邊長求第三邊用什么方法呢?設(shè)計意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗成功,從而增加學(xué)習(xí)興趣。 學(xué)生板演,師生點(diǎn)評。(五)課堂小結(jié)對學(xué)生提問:“通過這節(jié)課的學(xué)習(xí)有什么收獲?”學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會,并請個別學(xué)生發(fā)言。(六)達(dá)標(biāo)訓(xùn)練與反饋設(shè)計意圖:必做題較為簡單,要求全體學(xué)生完成;選作題有一點(diǎn)的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。希望得到各位專家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!勾股定理說課稿6各位老師、評委:大家好﹗今天我說課的題目是選自人教版八年級數(shù)學(xué)第十八章第一節(jié)的內(nèi)容:勾股定理。下面請大家和我共同走進(jìn)教材。它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。⒉教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)對學(xué)生知識、能力的要求,結(jié)合八年級學(xué)生實(shí)際水平、認(rèn)知特點(diǎn)制定以下教學(xué)目標(biāo)。過程與方法:讓學(xué)生經(jīng)歷“觀察猜想歸納驗證”的數(shù)學(xué)過程,并從中體會數(shù)形結(jié)合及從特殊到一般的數(shù)學(xué)思想。情感態(tài)度與價值觀:通過介紹我國古代在研究勾股定理方面取得的偉大成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,在探索問題的過程中,培養(yǎng)學(xué)生的合作交流意識和探索精神。本節(jié)課主要是對勾股定理的探索和勾股定理的證明。通過本節(jié)課的教學(xué),引領(lǐng)學(xué)生從不同的角度發(fā)現(xiàn)問題、用多樣化策略解決問題,從而提高學(xué)生分析、解決問題的能力。八年級學(xué)生已初步具備幾何的觀察能力和說理能力,也有了一定的空間想象和動手操作能力,但是他們的推理能力較弱、抽象思維能力不足。由于學(xué)生之前沒有接觸過等積法證明,他們對這種證明方法感到很陌生,尤其是覺得推理根據(jù)不明確,不象證明,沒有教師的啟發(fā)引領(lǐng),學(xué)生不容易獨(dú)立想到。(二)學(xué)情分析八年級學(xué)生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。(三)說教學(xué)方法數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,要展現(xiàn)獲取知識和方法的思維過程, 針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課采取引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知。(四)說學(xué)習(xí)方法我們常說:“現(xiàn)代的文盲不是不識字的人, 而是沒有掌握學(xué)習(xí)方法的人”, 因而在教學(xué)中要特別重視學(xué)法的指導(dǎo), 我采用了如下的學(xué)法指導(dǎo):在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的`主體?!净顒?】:(多媒體展示)欣賞圖片 了解歷史第一幅圖片配上文字說明。第二幅圖片為20xx年在我國北京召開的第24屆國際數(shù)學(xué)家大會的場景,值得一提的是這次大會的會徽,為著名的趙爽弦圖。第三幅圖片為介紹古代勾和股。學(xué)生,讀一讀和觀察。(多媒體展示)然后提出兩個問題,讓學(xué)生沿著畢達(dá)哥拉斯的足跡去探尋勾股定理。教師參與學(xué)生小組活動,指導(dǎo),傾聽學(xué)生交流。在計算C的面積時可能有一定的難度,此時就要用到數(shù)學(xué)當(dāng)中常見的割補(bǔ)法。設(shè)計意圖:通過講傳說故事來激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生進(jìn)入學(xué)習(xí)狀態(tài)。讓學(xué)生并且嘗試了從不同角度尋求解決問題的有效方法,并通過對方法的反思,獲得解決問題的經(jīng)驗。(多媒體展示)探究二{問題五}:等腰直角三角形三邊具有這樣的特殊關(guān)系,那么一般的直角三角形呢?如圖,每個小方格的面積為1個單位,你能寫出正方形A、B、C的面積嗎?將一般的直角三角形放入到網(wǎng)格中,并使得直角三角形的兩條直角邊為正整數(shù),讓學(xué)生去計算圖1和圖2中六個正方形的面積。學(xué)生計算,觀察,猜想,語言表達(dá)猜想結(jié)論。針對不同認(rèn)識水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。因此需要教師的引導(dǎo)。這樣的設(shè)計滲透了從特殊到一般的數(shù)學(xué)思想。(多媒體展示)猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。{問題六}:是不是所有的直角三角形都有這樣的特點(diǎn)呢?【活動3】:證明勾股定理師:這就需要我們對一個一般的直角三角形進(jìn)行證明。下面我們就來看一看我國數(shù)學(xué)家趙爽是怎樣證明這個命題的。學(xué)生展示分割,拼接的過程。并請小組代表到黑板演示拼圖過程,鼓勵學(xué)生敢于發(fā)表自己的見解。{問題八}:它們的面積分別怎樣表示?它們有什么關(guān)系呢?(多媒體展示)拼接圖,面積計算學(xué)生觀察,計算,小組討論。(這樣,既突破了難點(diǎn),讓學(xué)生感受到用等積法證明勾股定理的奧妙。利用分組討論,加強(qiáng)學(xué)生的合作意識。猜想與直角三角形的邊有關(guān),我國把它稱為勾股定理。正因如此,這個圖案被選為20xx年在北京召開的國際數(shù)學(xué)大會的會徽。3求下列直角三角形中未知邊的長:設(shè)計意圖:首先是幾道填空題和勾股定理的直接應(yīng)用,這幾道題既有類似又有不同,通過變式訓(xùn)練,強(qiáng)調(diào)應(yīng)用勾股定理時應(yīng)注意的問題。求出下列直角三角形中未知邊的長度。小明的媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。)設(shè)計意圖:這是一道和學(xué)生生活密切相關(guān)的應(yīng)用題,讓學(xué)生充分體會到數(shù)學(xué)是來源于生活,應(yīng)用于生活。教師進(jìn)行補(bǔ)充,總結(jié),為下節(jié)課做好鋪墊?!净顒?】:布置作業(yè)(多媒體展示)《勾股定理的證明》。(選做)設(shè)計的意圖:給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣。注重數(shù)學(xué)思想方法的滲透,整個勾股定理的探索、發(fā)現(xiàn)、證明都著意滲透數(shù)形結(jié)合,又從一般到特殊,從特殊回歸到一般的數(shù)學(xué)思想方法。數(shù)學(xué)問題生活化,用數(shù)學(xué)知識解決生活中的實(shí)際問題,關(guān)鍵在于把生活問題轉(zhuǎn)化為數(shù)學(xué)問題,讓生活問題數(shù)學(xué)化,然后才能得以解決。教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會更好了。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:能說出勾股定理的內(nèi)容。在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。(三)本課的教學(xué)重點(diǎn):探索勾股定理本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計算。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實(shí)驗操作—?dú)w納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。三、教學(xué)過程設(shè)計(一)提出問題:首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,,請問消防隊員能否進(jìn)入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識的基本觀點(diǎn),同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。這樣設(shè)計不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。(三)歸納驗證:歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。(四)問題解決:讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。(五)課堂小結(jié):主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。另外,補(bǔ)充一道開放題。探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。關(guān)于練習(xí)的設(shè)計,除兩個實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。勾股定理說課稿8一、教材分析1. 教材的地位和作用它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實(shí)際問題。在觀察、猜想、歸納、。在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生們的合作意識和然所精神。由于八年級的學(xué)生們具有一定分析能力,但活動經(jīng)驗不足,所以本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。二..教法學(xué)法分析:要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:先從學(xué)生們熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生們自己的課堂。三、教學(xué)程序設(shè)計故事引入新課,激起學(xué)生們學(xué)習(xí)興趣。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。(老師講解勾股定理在生活中的運(yùn)用)②在直角三角形中,已知∠ B=90176。數(shù)學(xué)來源于實(shí)踐,而又應(yīng)用于實(shí)踐。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。教材分析:如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個重要定理之一。勾股定理的發(fā)現(xiàn)、驗證和應(yīng)用蘊(yùn)含著豐富的文化價值,在
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1