【摘要】第二章實數(shù)6.實數(shù)知識回顧?有理數(shù)怎樣分類?整數(shù)分數(shù)有理數(shù)正有理數(shù)負有理數(shù)有理數(shù)0?帶根號的數(shù)都是無理數(shù)嗎?無理數(shù)是無限不循環(huán)小數(shù).帶根號的數(shù)不一定是無理數(shù).把下列各數(shù)分別填入相應(yīng)的集合內(nèi):,41,23,7,?,25?,2,320,5?,83?
2025-01-28 22:42
【摘要】估算某地開辟了一塊長方形荒地,新建一個以環(huán)保為主題的公園。已知這塊荒地的長是寬的2倍,它的面積為400000米2。(1)公園的寬大約是多少?它有1000米嗎?問題情景10002021S=4000002021×1000=2021000400000公園的寬沒有1000米
【摘要】第2課時勾股定理的實際應(yīng)用勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.a(chǎn)bcABC如果在Rt△ABC中,∠C=90°,那么222.abc??下面,我們用面積計算來證明這個定理。復習引入首頁請同學們畫四個與右圖全等的直角三角形,并把它剪下來。
2025-01-21 19:46
【摘要】探索勾股定理學習目標,并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應(yīng)用.課前預習1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關(guān)系為
2025-02-09 22:57
【摘要】初中數(shù)學(北師大版)八年級上冊第一章勾股定理知識點一圓柱側(cè)面上兩點間的最短距離圓柱側(cè)面的展開圖是一個長方形.圓柱側(cè)面上兩點之間最短距離的求法是把圓柱側(cè)面展開成平面圖形,依據(jù)兩點之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個圓
2024-07-31 13:04
【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動點P從點A出發(fā),沿著圓柱的側(cè)面移動到BC的中點S的最短距離為()1
2024-07-30 12:21
【摘要】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2024-07-30 18:04
2024-07-30 22:14
2024-08-01 05:34
【摘要】第3課時勾股定理的逆定理直角三角形有哪些性質(zhì)?(1)有一個角是直角;(2)兩個銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方.反之,一個三角形滿足什么條件才能是直角三角形呢?情景引入首頁(1)有一個角是直角的三角形是直角三角形;(2)有兩個角的和為90°的三角形是
2025-01-22 05:03
【摘要】第一章勾股定理探索勾股定理專題一有關(guān)勾股定理的折疊問題1.如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN長是()A.3cmB.4cmC.5cmD.6cm2.如圖,EF是正方形兩對邊中點的連線段,將∠
2025-01-31 14:08
【摘要】第一章勾股定理勾股定理的應(yīng)用◎新知梳理1.在運用勾股定理解決數(shù)學問題中,首先應(yīng)構(gòu)造直角三角形,再利用已知兩邊的長求第三邊;或已知其中的一邊,及其中兩邊的數(shù)量關(guān)系,通過建立方程求出這兩邊的長度.2.如圖,若圓柱的底面周長是40cm,高是30cm,從圓柱底部A處沿側(cè)面纏繞一圈絲線到頂部B處做裝飾,求這條
2024-08-01 12:20
【摘要】八年級數(shù)學北師大版·上冊第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個圓柱,它的高等于12cm,底面上圓的周長等于18cm.在圓柱下底面的點A有一只螞蟻,它想吃到上底面上與點A相對的點B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個圓柱,嘗試從點A到點B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2024-07-30 12:11
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學八年級上冊?B認識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2024-07-31 20:23