【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(一)課時(shí)跟蹤檢測(cè)新人教A版必修4知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難三角函數(shù)式的化簡(jiǎn)求值1、510條件求值問題46、7、8綜合問題2、39、11121.若sin(α+β)cosβ-cos(α
2025-02-11 03:40
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(二)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若tan??????π4+α=3,則tanα的值為()A.-2B.-12D.2解析:tan??????π4+α=3,即1+tanα1-tanα=3,解得tanα
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(一)學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進(jìn)行化簡(jiǎn)求值.(重點(diǎn))2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號(hào)規(guī)律.(易混點(diǎn))3.能正用、逆用、變形用公式進(jìn)行化簡(jiǎn)求值.
2025-02-06 18:51
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式并能應(yīng)用.(重點(diǎn))2.能夠熟練地正用、逆用和變形應(yīng)用兩角和與差的正切公式.(重點(diǎn)、難點(diǎn))兩角和與差的正切公式做一做(1)已知tanα=1
【摘要】?jī)山遣畹挠嘞夜浇虒W(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進(jìn)一步體會(huì)向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會(huì)應(yīng)用。教學(xué)重點(diǎn):兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點(diǎn):兩角差的余弦公式的推導(dǎo)。教學(xué)過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2025-02-10 22:40
【摘要】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2025-01-20 19:44
【摘要】?jī)山遣畹挠嘞夜揭?、?dāng)α、β為銳角時(shí),cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標(biāo)系中作單位圓O,并作角α與-β,設(shè)角α的終邊與單位圓交于點(diǎn)P1,-β角的終邊與單位圓交于點(diǎn)P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2025-02-06 23:46
【摘要】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡(jiǎn)記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號(hào)反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2025-01-21 12:17
【摘要】?jī)山呛团c差的正弦、余弦、正切公式新課導(dǎo)入想一想:cos15????????30sin45sin30cos45cos42621222322??????那呢?cos75cos15cos(4530)??cos75?cos(3
2025-07-24 00:45
【摘要】?jī)山遣畹挠嘞夜街攸c(diǎn):兩角差的余弦公式的推導(dǎo)過程及應(yīng)用.難點(diǎn):公式的推導(dǎo)過程及應(yīng)用技巧.(1)兩角差的余弦公式是推導(dǎo)其他和(差)角公式的根源,誘導(dǎo)公式是兩角和與差的三角函數(shù)公式的特殊情況.兩角中若有的整數(shù)倍角,使用誘導(dǎo)公式會(huì)簡(jiǎn)化運(yùn)算,不需要再用兩角和與差的三角函數(shù)公式展開來(lái)計(jì)算.(2)兩角差的余弦公式不能按照分配律展開,
2025-02-07 06:46
【摘要】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡(jiǎn)例1化簡(jiǎn)三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號(hào)下的式子化為完全平方式,再開出來(lái)運(yùn)算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
【摘要】?jī)山呛团c差的余弦公式教案 一.【教學(xué)目標(biāo)】 :理解兩角和與差的余弦公式的推導(dǎo)過程,熟記兩角和與差的余弦公式,運(yùn)用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問題。 2能力目標(biāo):培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)...
2025-04-03 02:41
【摘要】?jī)山遣畹挠嘞夜娇疾橹R(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難公式的簡(jiǎn)單運(yùn)用1、2、4給值求值問題56、8、9、11綜合應(yīng)用37、10、12131.化簡(jiǎn)cos(45°-α)cos(α+15°)-sin(45°-α)·si
2025-02-07 01:56
【摘要】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應(yīng)從變化函數(shù)名稱入手,盡量化
2025-02-07 01:55