【摘要】北師大八年級上冊第一章第一節(jié)123相傳兩千多年前,一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關系,同學
2025-02-02 08:16
【摘要】第一章勾股定理回顧與思考1、直角三角形的邊、角之間分別存在什么關系?⑴角與角之間的關系:在△ABC中,∠C=90o,有∠A+∠B=90o⑵邊與邊之間的關系:在△ABC中,∠C=90o,有222baC??議一議:2、舉例
2025-02-02 08:34
【摘要】探索勾股定理學習目標,并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應用.課前預習1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關系為
2025-01-28 22:44
2025-02-09 22:57
【摘要】第一章勾股定理參考例題[例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長.分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個直角三角形中.解:過點C作CD⊥AB于點D在Rt△ACD中,∠A=60°∠ACD=90
2025-02-05 03:02
【摘要】第一頁,編輯于星期六:二點三十四分。,,,第二頁,編輯于星期六:二點三十四分。,第三頁,編輯于星期六:二點三十四分。,,第四頁,編輯于星期六:二點三十四分。,,,,第五頁,編輯于星期六:二點三十四分。...
2024-10-23 00:30
【摘要】勾股定理復習學習目標:,會用拼圖法驗證勾股定理..直角三角形的條件.問題導學:?導學檢測:1〉直角三角形三邊長為6,8,x,則x=_______.5,12,則三邊上的高的和為____.10或2721138問題導學:理嗎?abcab
2025-01-09 13:14
【摘要】第一章勾股定理1探索勾股定理第1課時探索勾股定理第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練A知識要點分類練第1課時探索勾股定理知識點1勾股定理1.若一個直角三角形的兩直角邊的長分別為a,b,斜邊長為c,則下列關于a,b,
2025-07-30 01:43
【摘要】第一章勾股定理1.探索勾股定理(一)一、學生起點分析八年級學生已經(jīng)具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積極
2025-01-22 07:54
【摘要】 第一章勾股定理 參考例題 [例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長. 分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個直角...
2025-03-15 01:16
【摘要】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學習已深有體驗。首先,勾股定理是數(shù)形結合的最典型的代表。其次,了解勾股定理歷史的同學知道,正是由于勾股定理的發(fā)現(xiàn),導致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學的第一次危機。勾股定理中的公式是第一個不定方程,有許許多多的數(shù)滿足這個方程,也是有完整解答的最早的不定方程,由此由它引導出各式各樣的不
2025-01-09 19:33
【摘要】第一章勾股定理探索勾股定理專題一有關勾股定理的折疊問題1.如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN長是()A.3cmB.4cmC.5cmD.6cm2.如圖,EF是正方形兩對邊中點的連線段,將∠
2025-01-31 14:08
2025-08-04 21:20
【摘要】勾股定理第一章一個直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個問題,就用到了我們即將要學習的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2025-01-28 22:42
【摘要】第一章勾股定理1探索勾股定理第一課時,較長的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長的平方為()