【摘要】北師大版九年級下冊數(shù)學(xué)()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導(dǎo)入本節(jié)目標(biāo)..
2025-07-30 01:19
【摘要】九年級數(shù)學(xué)(下)第三章圓3.圓周角和圓心角的關(guān)系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2024-09-11 17:24
【摘要】方今之時,僅免刑焉!福輕乎羽,莫之知載;禍重乎地,莫之知避。
2025-02-10 03:09
【摘要】回顧與思考如圖1,∠AOB是角。OAB如圖2,AB=CD,則∠AOB與∠COD的大小關(guān)系是:。BAOCD圓心相等用心想一想,馬到功成在射門游戲中,球員射中球門的難易與他所處的位置B對球門AC的張角(∠
2025-01-21 19:08
【摘要】課題:圓周角與圓心角的關(guān)系課型:新授課年級:九年級教學(xué)目標(biāo):1.掌握圓周角的概念和圓周角定理的證明.2.經(jīng)歷探索圓周角和圓心角的關(guān)系的過程,學(xué)會以特殊情況為基礎(chǔ),通過轉(zhuǎn)化來解決一般性問題的方法,滲透分類的數(shù)學(xué)思想3.學(xué)生自主探索定理的過程中,經(jīng)歷猜想、推理、驗證等環(huán)節(jié),獲得正確學(xué)習(xí)方式.培養(yǎng)學(xué)生的探索精神和解決問題的能
2025-02-10 05:04
2024-07-31 17:31
【摘要】北師大版九年級下冊數(shù)學(xué)圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導(dǎo)入本節(jié)目標(biāo),會熟練運用推論解決問題.2.培養(yǎng)學(xué)生觀察、分析及理解問題的能力
【摘要】第28章圓第三節(jié)圓周角定理岷江東路學(xué)校王萍請你說一說:?答:頂點在圓心的角叫圓心角..OBC1.當(dāng)球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張角∠ABC,∠ADC,∠AEC.BACDE生活實
2025-01-24 01:34
【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關(guān)系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2025-01-12 02:59
【摘要】圓周角和圓心角的關(guān)系(1)一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關(guān)系?B3、下列命題是真命題的是()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,還是中心對稱圖形A①②B①③
2025-01-26 10:44
【摘要】圓周角和圓心角的關(guān)系(1)圓周角定理1、圓心角的定義?2、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等頂點在圓心的角為圓心角一、舊知回顧:當(dāng)圓心角的頂點發(fā)生變化時,這個角的位置有哪幾種情況?圓周角:像(圖二)這樣的角∠BAC我們稱為圓周角.OBC二、探索新知:
2024-09-02 05:53
【摘要】民樂縣第二中學(xué)王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______?!?60o在射門游戲中,球員射中球門的難易與他所處的位
2025-02-09 16:28
【摘要】●OEFABC頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游戲中
2025-01-21 21:17
【摘要】如圖,在足球射門的游戲中,球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠BAC)有關(guān).當(dāng)球員在B、D、E三點射門時,他所處的位置對球門AC分別形成三個張角∠BAC,∠BAC,∠BAC.這三個角的大小有什么關(guān)系?在這三點射門的效果一樣嗎?創(chuàng)設(shè)情境,自然引入探究學(xué)習(xí),感悟新知問題1:觀察圖中的
2025-01-20 18:27
【摘要】課題:圓周角和圓心角的關(guān)系課型:新授課年級:九年級教學(xué)目標(biāo):1.掌握圓周角定理的兩個推論,會熟練運用這兩個推論解決相關(guān)問題。2.掌握圓的內(nèi)接四邊形的概念及性質(zhì),并能加以熟練運用。3.通過實際問題的解決,體會建立數(shù)學(xué)模型解決實際問題的過程,養(yǎng)成用數(shù)學(xué)的思維方式思考問題的習(xí)慣.教學(xué)重點與難點:重點:
2025-02-11 12:44