freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教a版數(shù)學(xué)必修五正弦定理說課稿-在線瀏覽

2024-10-02 09:55本頁面
  

【正文】 及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理, 學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。,∠B=53176。(二)探尋特例,提出猜想1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。,得出猜想:在三角形中,角與所對的邊滿足關(guān)系這為下一步證明樹立 信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明(四)歸納總結(jié),簡單應(yīng)用1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。(五)講解例題,鞏固定理(六)課堂練習(xí),提高鞏固(七)小結(jié)反思,提高認(rèn)識通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。而在《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》中重新進(jìn)行了整合,將其安排在必修模塊數(shù)學(xué)5中,獨(dú)立成為一章。(二)教學(xué)要求的變化大綱版教材要求(1)掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。(3)實(shí)習(xí)作業(yè)以測量為內(nèi)容,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力和實(shí)際操作的能力。(2)能運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實(shí)際問題。(三)課程關(guān)注點(diǎn)的變化原《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》中的“解斜三角形”,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。(四)教材編寫理念上的變化原《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》中,解斜三角形作為平面向量知識的應(yīng)用,突出其工具性和應(yīng)用性。解三角形處理的是三角形中長度、角度、面積和度量問題,長度、面積是理解積分的基礎(chǔ),角度是刻畫方向的,長度、方向是向量的特征,有了長度、方向,向量的工具自然就有了用武之地。因此,正弦定理的知識非常重要。教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。(根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo))教學(xué)目標(biāo)分析:知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價值。學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。教學(xué)過程(一)創(chuàng)設(shè)情境,布疑激趣“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47176。AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。(三)邏輯推理,證明猜想1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價值觀。在△ABC中,已知A=32176。8176。9cm。例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。在△ABC中,已知a=20cm,b=28cm,A=40176。例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。完了把時間交給學(xué)生。(1)A=45176。c=10cm(2)A=60176。c=20cm在△ABC中,已知下列條件,解三角形。(2)c=54cm,b=39cm,C=115176。(七)小結(jié)反思,提高認(rèn)識通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。)(八)任務(wù)后延,自主探究如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。(九)作業(yè)布置正弦定理說課稿2尊敬的各位專家、評委:大家好!我是**縣**中學(xué)數(shù)學(xué)教師fwsi,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。二、學(xué)情分析我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。三、教學(xué)目標(biāo)知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。樹立”數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)“的理念。教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。五、教學(xué)過程為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:(一)創(chuàng)設(shè)情景,揭示課題問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?1671年兩個法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時是怎樣測出這個距離的嗎?問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(二)特殊入手,發(fā)現(xiàn)規(guī)律問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據(jù)初中知識,解決這樣一個問題。問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個能力嗎?下面我希望你能用實(shí)力告訴我,開始。)放手給學(xué)生實(shí)踐的機(jī)會和時間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)教師講解:告訴大家,其實(shí)這個大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940998﹞首先發(fā)現(xiàn)與證明的。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學(xué)家的老師了。通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊的同學(xué)數(shù)量,同時培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。(本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評)充分給學(xué)生自己動手的時間和機(jī)會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會知識的形成、發(fā)展、完善的過程。學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。(七)板書設(shè)計:(略)正弦定理說課稿3尊敬的各位考官:大家好,我是今天的X號考生,今天我說課的題目是《正弦定理》。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。在正式內(nèi)容開始之前,我要先談一談對教材的理解。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識,且積累很多的證明、推導(dǎo)的經(jīng)驗,為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識方面也有了一定的積累。三、說教學(xué)目標(biāo)根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):(一)知識與技能能證明正弦定理,并能利用正弦定理解決實(shí)際問題。(三)情感、態(tài)度與價值觀在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對數(shù)學(xué)的興趣。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。難點(diǎn):正弦定理的證明。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。素的過程叫做解三角形。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊。整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點(diǎn),利用學(xué)生已有的知識經(jīng)驗,采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識。通過這樣的設(shè)計,提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。這些為學(xué)生學(xué)習(xí)正弦定理提供了堅實(shí)的基礎(chǔ)。 依據(jù)教材的上述地位和作用,我確定如下教學(xué)目標(biāo)和重難點(diǎn)(1)知識目標(biāo):①引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;②簡單運(yùn)用正弦定理解三角形、初步解決某些與測量和幾何計算有關(guān)的實(shí)際問
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1