【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲?;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點:掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點:提高“用導(dǎo)數(shù)求函數(shù)的極值及
2025-02-10 01:48
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(函數(shù)的極值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用;2.了解可導(dǎo)函數(shù)在某點取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點兩側(cè)異號)。二:課前預(yù)習(xí)1.函數(shù)a
2025-01-23 00:30
【摘要】極大值與極小值(2)1、如果在x0附近的左側(cè)f’(x)0,右側(cè)f’(x)0,則f(x0)是極小值;已知函數(shù)f(x)在點x0處是連續(xù)的,則一、判斷函數(shù)極值的方法?導(dǎo)數(shù)為0的點不一定是極值點;?
2025-01-21 08:47
【摘要】南陽市八中數(shù)學(xué)組方國順復(fù)習(xí)導(dǎo)入本節(jié)關(guān)注:利用導(dǎo)數(shù)能否解決最值問題?如果能,怎么求最值.利用導(dǎo)數(shù)求極值的步驟?函數(shù)y=f(x)在區(qū)間[a,b]上的最大值點x0指的是:函數(shù)在這個區(qū)間上所有點的函數(shù)值都不超過f(x0).
2025-01-20 05:28
【摘要】課題:3.8函數(shù)的最大值與最小值(二)教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法; ⒉初步會解有關(guān)函數(shù)最大值、最小值的實際問題教學(xué)重點:解有關(guān)函數(shù)最大值、最小值的實際問題.教學(xué)難點:解有關(guān)函數(shù)最大值、最小值的實際問題.授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀教學(xué)過程:一、復(fù)習(xí)引入::一般地
2024-07-29 23:34
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、理解極大值與極小值的概念;2、會求簡單函數(shù)的極大值與極小值。重點:極大值與極小值的概念和求法。課前預(yù)學(xué):問題1:判斷函數(shù)y=f(x)的極值的一般方法解方程
2025-02-07 06:44
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實際問題的能力.二、教學(xué)重點:求函數(shù)的最值及求實際問題的最值.教學(xué)難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點要把實際問題“數(shù)學(xué)化”
2025-01-22 19:27
【摘要】奎屯王新敞新疆知識回顧1、一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時的步驟是:(1)(3)求
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進(jìn)一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點:應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為
【摘要】函數(shù)的最大值與最小值一、復(fù)習(xí)與引入f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方法是:①如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極大值;②如果在x0附近的左側(cè)右側(cè)
2024-12-06 11:51
【摘要】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實際問題中的應(yīng)用最大值、最小值問題第1課時函數(shù)的最大值與最小值第四章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導(dǎo)數(shù)求某定義域上函數(shù)的最值.f(x)的最大值為_____,最小值為
2025-01-19 23:22
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域為A,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個值x1、x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個值x1、x2
2025-01-21 08:56
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2025-01-20 23:31
【摘要】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實際問題中的應(yīng)用最大值、最小值問題第2課時生活中的優(yōu)化問題舉例第四章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)能利用導(dǎo)數(shù)知識解決實際生活中的利潤最大、效率最高、用料最省等最優(yōu)化問題.,我們經(jīng)常遇到面積、體積最大,周長最小,利
2025-01-20 08:43
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在實際生活中的應(yīng)用導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.學(xué)會把實際問題轉(zhuǎn)化為數(shù)學(xué)問題;2.最優(yōu)化問題的求解(利用導(dǎo)數(shù)求最值)。二:課前預(yù)習(xí)1.回憶求函數(shù)最值的步驟。60cm的鐵絲圍成矩形,長、寬各為多少時矩形的面積最大?