【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時(shí),f′(x)0,x1時(shí)
2024-12-12 18:01
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)
2024-11-27 13:08
【摘要】最大值與最小值教學(xué)目的:⒈使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;⒉使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法.教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-28 00:26
【摘要】第3課時(shí)函數(shù)的最大值與最小值,了解其與函數(shù)極值的區(qū)別與聯(lián)系.[a,b]上連續(xù)的函數(shù)f(x)的最大值和最小值的方法和步驟.如圖,設(shè)鐵路線AB=50km,點(diǎn)C處與B之間的距離為10km,現(xiàn)將貨物從A運(yùn)往C,已知1km鐵路費(fèi)用為2元,1km公路費(fèi)用為4元,在AB上M處修筑公
2024-11-27 23:14
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第10課時(shí)函數(shù)的最大值與最小值教學(xué)目標(biāo):;和步驟.教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué):::
2024-11-27 17:30
【摘要】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-13 06:35
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲担?、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點(diǎn):掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點(diǎn):提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-16 01:48
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(函數(shù)的極值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.了解函數(shù)極值的概念,會(huì)從幾何直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,并會(huì)靈活應(yīng)用;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào))。二:課前預(yù)習(xí)1.函數(shù)a
2024-11-28 00:30
【摘要】極大值與極小值(2)1、如果在x0附近的左側(cè)f’(x)0,右側(cè)f’(x)0,則f(x0)是極小值;已知函數(shù)f(x)在點(diǎn)x0處是連續(xù)的,則一、判斷函數(shù)極值的方法?導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn);?
2024-11-26 08:47
【摘要】南陽市八中數(shù)學(xué)組方國順復(fù)習(xí)導(dǎo)入本節(jié)關(guān)注:利用導(dǎo)數(shù)能否解決最值問題?如果能,怎么求最值.利用導(dǎo)數(shù)求極值的步驟?函數(shù)y=f(x)在區(qū)間[a,b]上的最大值點(diǎn)x0指的是:函數(shù)在這個(gè)區(qū)間上所有點(diǎn)的函數(shù)值都不超過f(x0).
2024-11-25 05:28
【摘要】課題:3.8函數(shù)的最大值與最小值(二)教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法;?、渤醪綍?huì)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題教學(xué)重點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問題.教學(xué)難點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問題.授課類型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀教學(xué)過程:一、復(fù)習(xí)引入::一般地
2025-06-24 23:34
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、理解極大值與極小值的概念;2、會(huì)求簡(jiǎn)單函數(shù)的極大值與極小值。重點(diǎn):極大值與極小值的概念和求法。課前預(yù)學(xué):?jiǎn)栴}1:判斷函數(shù)y=f(x)的極值的一般方法解方程
2024-12-13 06:44
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.教學(xué)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”
2024-11-27 19:27
【摘要】奎屯王新敞新疆知識(shí)回顧1、一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時(shí)的步驟是:(1)(3)求
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進(jìn)一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點(diǎn):應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為