【摘要】第一篇:高中數(shù)學圓與圓的位置關系教案 教學要求:能根據(jù)給定圓的方程,判斷圓與圓的位置關系;教學重點:能根據(jù)給定圓的方程,判斷圓與圓的位置關系教學難點:用坐標法判斷兩圓的位置關系教學過程: 一、...
2024-10-29 07:55
【摘要】圓與圓的位置關系直線與圓的方程的應用一、選擇題1.已知0<r<2+1,則兩圓x2+y2=r2與(x-1)2+(y+1)2=2的位置關系是()A.外切B.相交C.外離D.內含解析:選B設圓(x-1)2+(y+1)2=2的圓心為O′,則O′(1,-1).圓x2+y2
2025-02-10 02:39
【摘要】4.2直線、圓的位置關系直線與圓的位置關系問題提出t57301p2???????1、點到直線的距離公式,圓的標準方程和一般方程分別是什么?222()()xaybr????22220(40)xyDxEyFDEF????????0022||AxBy
2025-01-21 12:19
【摘要】我們能做的只有躲避。在自然災難面前人類是弱小的,問題:一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西70km處,受影響的范圍是半徑長為30km的圓形區(qū)域。已知港口位于臺風中心正北40km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響
2025-01-20 19:51
【摘要】圓方程及直線與圓的位置關系復習柯橋中學高二備課組一、基本概念1、圓的標準方程以(a,b)為圓心,r為半徑的圓的標準方程為:(x-a)2+(y-b)2=r22、圓的一般方程:x2+y2+Dx+Ey+F=0此方程中D、E、F在什么條件下表示為圓、點圓、虛圓?如何求此圓的圓心和
2024-09-04 03:44
【摘要】§圓與圓的位置關系教學目標1、知識技能目標:(1)理解圓與圓的位置的種類;(2)利用平面直角坐標系中兩點間的距離公式求兩圓的圓心距;(3)會用圓心距判斷兩圓的位置關系.2、過程方法目標:通過一系列例題,培養(yǎng)學生觀察問題、分析問題和解決問題的能力.3、情感態(tài)度價值觀目標:讓學生通過觀察圖形,理解并掌握圓與圓的位
2025-01-23 03:14
【摘要】第一篇:2015年高中數(shù)學蘇教版必修2 圓與圓的位置關系 教學目標: 1.理解圓與圓的位置關系; 2.利用平面直角坐標系中兩點間的距離公式求兩圓的圓心距;3.會用圓心距與兩圓半徑之間的大小關系...
2024-10-28 22:33
【摘要】直線與圓、圓與圓的位置關系直線與圓、圓與圓的位置關系考題大攻略考前大沖關考向大突破2考向大突破1考向大突破3欄目順序●請點擊相關內容考向大突破一直線與圓的位置關系例1(1)(2021·重慶卷)對任意的實數(shù)k,直
2025-02-02 11:28
【摘要】【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學直線與圓、圓與圓的位置關系第1課時課后訓練北師大版必修21.若直線(1+a)x+y+1=0與圓x2+y2-2x=0相切,則a的值為().A.1或-1B.2或-2C.1D.-12.直線3yx?被圓x2+y2-
2025-02-05 03:17
【摘要】直線與圓的位置關系備用習題m>0,則直線2(x+y)+1+m=0與圓x2+y2=m的位置關系為()分析:圓心到直線的距離為d=21m?,圓半徑為m.∵d-r=21m?-m=21(m-2m+1)=
2025-02-10 20:20
【摘要】?創(chuàng)設情境引入新課一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西40km處,受影響的范圍是半徑長為20km的圓形區(qū)域.已知港口位于臺風中心正北20km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響?輪船港口臺風思考1:解決這個問題的本質是什么?思考2:
2025-01-20 05:38
【摘要】(同步復習精講輔導)北京市2021-2021學年高中數(shù)學直線和圓的位置關系講義新人教A版必修2引入若直線1:1:22????yxCbyaxl與圓有兩個不同交點,則點P(a,b)與圓C的位置關系是()A.點在圓上B.點在圓內C.點在圓外D.不能確定重難點易錯點解析題
2025-02-06 23:45
【摘要】直線的斜率為了刻畫一條直線的位置,除了點之外,還有直線的傾斜程度.通過建立直角坐標系,點可以用坐標來刻畫,那么,直線的傾斜程度如何來刻畫呢?直線高度寬度?高度坡度寬度想一想:樓梯的傾斜程度是怎樣刻畫的?可以看出:如果樓梯臺階的寬度不變,那么每
2025-01-20 15:21
【摘要】第2課時(一)導入新課思路,接到氣象臺的臺風預報:臺風中心位于輪船正西70km處,受影響的范圍是半徑長為30km的圓形區(qū)域.已知港口位于臺風中心正北40km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響?圖2分析:如圖2,以臺風中心為原點O,以東西方向為x軸,建立直角坐標系,其中,取1
2025-02-05 04:57
【摘要】第4課時直線與圓、圓與圓的位置關系1.直線與圓的位置關系基礎知識梳理位置關系相離相切相交公共點個數(shù)個1個個幾何特征(圓心到直線的距離d,半徑r)d=r代數(shù)特征(直線與圓的方程組成的方程組)無實數(shù)解有兩組相同實數(shù)解有兩組不同實
2024-09-02 18:42