【摘要】§圓錐曲線教學目標,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學符號或自然語言的描述。2.通過用平面截圓錐面,感受、了解雙曲線的定義。能用數(shù)學符號或自然語言描述雙曲線的定義。教學重點、難點重點:橢圓、拋物線、雙曲線的定義。難點:用數(shù)學符號或自然語言描述三種曲線的定義[教
2025-02-10 21:22
【摘要】江蘇省漣水縣第一中學高中數(shù)學圓錐曲線復習課(4)教學案蘇教版選修1-1班級:高二()班姓名:____________2221xyaa??表示焦點在y軸上的橢圓,則實數(shù)a的取值范圍是)0,3(),0,3(21FF?,一條漸近線方程為xy2?,那么它的兩條準線間的距離為
2025-01-22 21:26
【摘要】江蘇省漣水縣第一中學高中數(shù)學圓錐曲線復習課(2)教學案蘇教版選修1-1班級:高二()班姓名:____________教學目標:1.掌握圓錐曲線的共同性質(zhì);2.掌握橢圓、雙曲線、拋物線的幾何性質(zhì);3.會求一些簡單的曲線的軌跡方程.教學重點:圓錐曲線的共同性質(zhì)及曲線方程的求法.教學難點:圓錐曲線的共同性質(zhì)及曲線方程
【摘要】曲線與方程曲線與方程yxb??k222()()xaybr????為什么?復習回顧:我們研究了直線和圓的方程.P(0,b)和斜率為k的直線l的方程為____________,平分第一、三象限的直線方程是______________C(a
2025-01-20 15:21
【摘要】圓錐曲線的共同性質(zhì)3、拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡表達式PF=d(d為動點到定直線距離)1、橢圓的定義:平面內(nèi)到兩定點F1、F2距離之和等于常數(shù)2a(2aF1F2)的點的軌跡表達式PF1+PF2=2a(2aF
2025-01-20 23:31
【摘要】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標準方程的焦點在哪個軸上的準則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2024-11-05 20:45
【摘要】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線(1)導學案蘇教版選修1-1學習目標:,發(fā)現(xiàn)圓錐曲線的形成過程,進而歸納出它們的定義,培養(yǎng)觀察、辨析、歸納問題的能力..,感受數(shù)形結(jié)合的基本思想和理解代數(shù)方法研究幾何性質(zhì)的優(yōu)越性.重點難點:
2025-01-22 17:31
【摘要】第2章——圓錐曲線[學習目標]..、拋物線的定義和幾何圖形..1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]M到兩個定點F1、F2距離乊和滿足MF1+MF2=
2025-01-21 08:08
【摘要】橢圓【學習目標】1.掌握橢圓的標準方程,會求橢圓的標準方程;2.掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標準方程和幾何性質(zhì)處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級要求【自學評價】橢圓定義:2.橢圓的標準方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質(zhì):方程
2025-07-25 23:27
【摘要】第2章圓錐曲線與方程(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.已知橢圓的離心率為12,焦點是(-3,0),(3,0),則橢圓方程為______________.2.當a為任意實數(shù)時,直線(2a+3)x+y-4a+2=0恒過定點P,則過點P的拋物
2025-02-07 09:21
【摘要】2021年高中數(shù)學全套備課精選第二章圓錐曲線與方程章末總結(jié)(含解析)蘇教版選修1-1知識點一圓錐曲線的定義和性質(zhì)對于圓錐曲線的有關問題,要有運用圓錐曲線定義解題的意識,“回歸定義”是一種重要的解題策略;應用圓錐曲線的性質(zhì)時,要注意與數(shù)形結(jié)合思想、方程思想結(jié)合起來.總之,圓錐曲線的定義、性質(zhì)在解題中有重要作用,要注意靈活運用.
【摘要】第2章圓錐曲線與方程(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.以x軸為對稱軸,拋物線通徑長為8,頂點在坐標原點的拋物線的方程為__________.2.雙曲線9x2-4y2=-36的漸近線方程是____________________________.
【摘要】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2025-01-22 16:21
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2025-01-21 08:56
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2025-01-21 08:57