【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2025-01-15 17:12
【摘要】2020/12/19向量的加法看書P80~83(限時6分鐘)學(xué)習(xí)目標(biāo):通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/19由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
【摘要】1.掌握向量的定義,向量和數(shù)量的區(qū)別。2.通過力和力的分析實例,了解向量的實際背景。3.掌握向量表示,零向量和單位向量。4.平行向量、共線向量、相等向量的定義。平面向量一看書P82~84(限時5分鐘)學(xué)習(xí)目標(biāo)1.什么是向量?向量和數(shù)量有何不同?向量:即有大小又有方向的量(數(shù)量:只有大小,沒有方向的量)
2025-01-12 00:53
【摘要】平面向量的坐標(biāo)運算鄭德松平面向量的坐標(biāo)運算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
2025-01-15 16:44
【摘要】3.8點到平面的距離課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),并會求點到平面的距離.2.能利用直線的方向向量和平面的法向量求空間中的各種距離.3.體會向量方法在研究立體幾何中的作用.課前自主學(xué)案溫故夯基1.若點A(x1,y1,z1),
2025-01-15 17:11
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實際問題的重要思想方法;?(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá).?教學(xué)重點:平面向量基本定理.
2025-01-15 18:20
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2025-01-15 19:04
【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2025-01-12 08:07
【摘要】退出平面與平面垂直的判定定理和性質(zhì)定理(一)判定定理性質(zhì)定理課后思考應(yīng)用作業(yè)小結(jié)引入建筑工人砌墻時,常用一端系有鉛錘的線來檢查所砌的墻面是否和地面垂直,如果系有鉛錘的線和墻面緊貼,問題引入引入那么所砌的墻面與地面垂直。大家知道其中的理論根據(jù)嗎?退出平面與平面垂直
2025-01-12 08:11
【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
【摘要】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2025-01-15 18:19
【摘要】1上杭縣高級中學(xué)講課人:周文才時間:07年12月14日2345678所以:解:以點C為坐標(biāo)原點建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點評:找到
2025-01-15 16:42
【摘要】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:相等向量:長度相等且方向相同的向量AB用小寫字母表示,或者用表示向量的有向線段的起點和終點字母表示。aCD用有向線段表示字母表示法:2、平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向
2025-01-12 08:13