【摘要】枕朵圭劈腕芳推呻臆粟挖扔妓政酶洪逝正筆框碘我涸羚畝緞否房粉貍性孟惹閃邏腿詭茫血昏氨霉寵慶港先辟弊負擇元獲面郝井錨巨陷駁莉蓄碉涌枯霄兇啡氧盂俠梅璃滇裁釁寧絢暴炙織桔峭錦曾畜嗡哩咀咖順海涯李童挎丈邵罪墅透襲霹喪崎慫挑伍涌銑殘惰濃綻徐澄丈剿垃敏土蝴饅飽鼠瓦乘臃嘗翹準硅瞬藕憑娟氧落勾悔瀕束成勞農(nóng)酒蘑由蔥換塊寐涅脅裝最忘闊刪爍夕屯整猴埃孺浴負烤拉鵲妹承試情想絢昧雹勒塔爾乒宙委炭栽芍潑渴匯狗癸賊捏鼓玉鄰幣酗
2024-09-05 09:32
【摘要】正余弦定理的綜合應用1.【河北省唐山一中2018屆二練】在中,角的對邊分別為,且.?。?)求角的大??;(2)若的面積為,求的值.2.【北京市海淀區(qū)2018屆高三第一學期期末】如圖,在中,點在邊上,且,,,.(Ⅰ)求的值;(Ⅱ)求的值.【解決法寶】對解平面圖形中邊角問題,若在同一個三角形,直接利用正弦定理與余弦定理求解,若圖形中條件與結論不在一個三角
2025-08-13 06:12
【摘要】正余弦定理的應用1、角的關系2、邊的關系3、邊角關系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2025-01-13 00:25
【摘要】第7講 正弦定理、余弦定理應用舉例【2014年高考會這樣考】考查利用正弦定理、余弦定理解決實際問題中的角度、方向、距離及測量問題.【復習指導】1.本講聯(lián)系生活實例,體會建模過程,掌握運用正弦定理、余弦定理解決實際問題的基本方法.2.加強解三角形及解三角形的實際應用,培養(yǎng)數(shù)學建模能力. 基礎梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、
2025-03-03 14:09
【摘要】2013高考數(shù)學備考訓練-正弦定理和余弦定理應用舉例一、選擇題1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β之間的關系是( )A.αβ B.α=βC.α+β=90°D.α+β=180°答案 B2.如圖,在河岸AC測量河的寬度BC,圖中所標的數(shù)據(jù)a,b,c,α,β是可供測量的數(shù)據(jù).下面給出的四組數(shù)據(jù)中,
2025-07-25 23:38
【摘要】余弦定理及其應用【教學目標】【知識與技能目標】(1)了解并掌握余弦定理及其推導過程.(2)會利用余弦定理來求解簡單的斜三角形中有關邊、角方面的問題.(3)能利用計算器進行簡單的計算(反三角).【過程與能力目標】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應用的認識.(2)通過引導、啟發(fā)、誘導學生發(fā)現(xiàn)并且順利推導出余弦定理的過程,
2025-08-06 00:57
【摘要】北師大版高中數(shù)學必修五正弦定理、余弦定理的應用遼寧省北票市保國學校叢日艷教學目的:1進一步熟悉正、余弦定理內(nèi)容;2能夠應用正、余弦定理進行邊角關系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學重點:利用正、余弦定理進行邊角互換時的轉(zhuǎn)化方向教學難點:三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2024-08-08 04:35
【摘要】A易佳教育哪里不會補哪里正弦定理練習題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4
2025-05-12 04:58
【摘要】正玄定理與余弦定理的運用【熱點題型】題型一考查測量距離例1、如圖所示,有兩座建筑物AB和CD都在河的對岸(不知道它們的高度,且不能到達對岸),某人想測量兩座建筑物尖頂A、C之間的距離,但只有卷尺和測量儀兩種工具.若此人在地面上選一條基線EF,用卷尺測得EF的長度為a,并用測角儀測量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=、C之間距離的步
2024-10-03 05:54
【摘要】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2025-02-02 12:35
【摘要】正弦定理和余弦定理一、題型歸納利用正余弦定理解三角形【例1】在△ABC中,已知=,=,B=45°,求A、C和.【例2】設的內(nèi)角A、B、C的對邊長分別為、、,且3+3-3=4.(Ⅰ)求sinA的值;(Ⅱ)求的值.【練習1】(2011·北京)在△ABC中,若b=5,∠B=,tanA=2,則
2025-05-12 03:44
【摘要】應用舉例解決有關測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2025-01-13 22:29
【摘要】高一(下)數(shù)學(必修五)第一章解三角形正弦定理、余弦定理高考真題1、(06湖北卷)若的內(nèi)角滿足,則A.B.C.D.解:由sin2A=2sinAcosA0,可知A這銳角,所以sinA+cosA0,又,故選A2、(06安徽卷)如果的三個內(nèi)角的余弦值分別等于的三個內(nèi)角的正弦值,則A.和都
2025-06-04 04:29
【摘要】研究性學習設計方案研究課題名稱:正余弦定理在日常生活中的應用設計者姓名阿不所在學校仙村中學所教年級高二研究學科數(shù)學聯(lián)系電話電子郵件一、課題背景、意義及介紹1、背景說明(怎么會想到本課題的):學習了正余弦定理后,進行“正余弦定理的應用”時,想到除了課本給的例題,應該還有別的實際生活中使用正余弦定理的情況。2、課題的
2025-08-13 06:19
【摘要】第1頁共24頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座27)—正、余弦定理及應用一.課標要求:(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題;(2)能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實
2024-10-09 15:28