【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實軸長是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點F的直
2024-09-02 20:57
【摘要】2022屆高考數(shù)學復習強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省
2024-09-03 10:09
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-05-12 00:04
【摘要】第1頁共35頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強等價轉(zhuǎn)化思想的訓練;2.通過圓錐曲線與方程的學習,進一步體會數(shù)形結合的思想;3.了解圓錐曲線
2024-10-09 15:29
【摘要】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關點法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設圓C:(x-1)2+y2=1,過原點O作圓的任意弦OQ,求所對弦的中點P的軌跡方程。一.直接法設P(
2025-08-09 19:28
【摘要】圓錐曲線?解析幾何是在坐標系的基礎上,用坐標表示點、用方程表示點的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學生已掌握平面幾何知識與平面直角坐標系、平面向量、兩點距離公式及基本初等函數(shù)、直線與圓的方程等知識的基礎上
2025-01-24 02:39
【摘要】精品資源普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強等價轉(zhuǎn)化思想的訓練;2.通過圓錐曲線與方程的學習,進一步體會數(shù)形結合的思想;3.了解圓錐曲線的簡單應用。二.命題走向近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-05-12 06:47
【摘要】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點P,過點P作X軸的垂線段PD,D為垂足.當點P在圓上運動時,線段PD的中點M的軌跡是什么?變式1:設點P是圓上的任一點,定點D的坐標為(8,0).當點P在圓上運動時,求線段PD的中點M的軌跡方程.解:設點M的坐標為,點P的坐標為,則,.即,.
2024-09-14 10:24
【摘要】圓錐曲線與方程習題圓錐曲線與方程練習題及答案一、選擇題【共12道小題】1、以的焦點為頂點,頂點為焦點的橢圓方程為(?)A.???????????B.????
2024-09-14 14:53
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學設計設計者姓名郭曉泉設計者單位華亭縣第二中學
2025-06-29 01:30
【摘要】2009屆廣東省(課改區(qū))各地市期末數(shù)學分類試題《直線與圓及其方程》、《圓錐曲線與方程》部分《直線與圓及其方程》、《圓錐曲線與方程》一、選擇題1.【廣東韶關·文】BA.1B.C.D.2.【潮州·理科】8、(文科10)已知點是圓:內(nèi)一點,直線是以為中點的弦所在的直線,若直線的
2024-09-01 19:44
【摘要】大慶目標教育圓錐曲線一、知識結構在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2024-09-14 14:02
【摘要】軌跡方程的若干求法,供同學們參考.一、直接法直接根據(jù)等量關系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ) ?。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2024-08-30 00:18
【摘要】......§知識要點一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標準方程:i.中心在原點,焦點在x軸上:.ii.中心在原點,焦點在軸上:.②一般方程:.③橢
2025-08-09 23:13
【摘要】精品資源第八章圓錐曲線的方程1、已知F1、F2是雙曲線的兩焦點,以線段F1F2為邊作正三角形,若雙曲線恰好平分正三角形的另兩邊,則雙曲線的離心率是() A、 B、 C、 D、MxyNF21、D【思路分析】法一:F2(c,0),M(0,c)依MF2中點N()在雙曲線上,得=1即=1=1.注意到e1,解
2024-08-09 16:44