【摘要】三角恒等變換專題復(fù)習(一)2012-8-7一、基本內(nèi)容串講1.兩角和與差的正弦、余弦和正切公式如下:;;對其變形:tanα+tanβ=tan(α+β)(1-tanαtanβ),有時應(yīng)用該公式比較方便。2.二倍角的正弦、余弦、正切公式如下:...要熟悉余弦“倍角”與“二次”的關(guān)系(升角
2025-05-11 05:44
【摘要】......三角恒等變換大題=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值.(x)=.(1)求f的值;(2
【摘要】設(shè)計:高一年級數(shù)學備課組授課教師:李洪偉1、降冪擴角公式3、輔助角公式22cos1cos)3(22cos1sin)2(2sin21cossin)1(22????????????2、升冪縮角公式1cos2sin21sincos2cos
2024-09-05 08:55
【摘要】......§兩角和與差的三角函數(shù)【復(fù)習目標】1.掌握兩角和與差的三角函數(shù)公式,掌握二倍角公式;2.能正確地運用三角函數(shù)的有關(guān)公式進行三角函數(shù)式的求值.3.能正確地運用三角公式進行三角函數(shù)式
2024-08-04 20:23
【摘要】函數(shù)、三角函數(shù)、三角恒等變換重要公式1.=;=;2、當為奇數(shù)時,;當為偶數(shù)時,.3、⑴;?、?;4、運算性質(zhì):⑴;⑵;⑶.5、指數(shù)函數(shù)解析式:6、指數(shù)函數(shù)性質(zhì):圖象性質(zhì)(1)定義域:R(2)值域:(0,+∞)(3)過定點(0,1),即x=0時,y=1(4)在R上是增函數(shù)(4)在R上是
2024-09-04 05:18
【摘要】三角函數(shù)恒等變換一、三角函數(shù)的誘導公式1、下列各角的終邊與角α的終邊的關(guān)系角2kπ+α(k∈Z)π+α-α圖示與α角終邊的關(guān)系相同關(guān)于原點對稱關(guān)于x軸對稱角π-α-α+α圖示與α角終邊的關(guān)系關(guān)于y軸對稱關(guān)于直線y=x對稱2、六組誘
2025-07-03 07:40
【摘要】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡常用方法:①直接應(yīng)用公式進行降次、消項;②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
【摘要】范文范例參考第4講簡單的三角恒等變換★知識梳理1.升降冪公式:;2.同角正余弦化積公式,其中;=★重難點突破:掌握利用三角恒等變換處理三角式化簡,求值與證明等問題。:確定三角變換的方向及三角公式的合理運用.:通過審題分析已知條件和待求結(jié)論之間角的差異,建立聯(lián)系,使問題獲解。(1)三角變換的基本思
2024-08-06 19:50
【摘要】新課標高中一輪總復(fù)習理數(shù)理數(shù)第四單元三角函數(shù)與平面向量第22講簡單的三角恒等變換能運用同角三角函數(shù)的基本關(guān)系、誘導公式、兩角和與差的三角公式進行簡單的三角恒等變換.△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A
2025-01-24 01:05
【摘要】簡單的三角恒等變換第一課時問題提出t57301p2???????分別是什么?sin(α±β)=sinαcosβ±cosαsinβ??????tantan1tantan)(tan????cos(α±β)=cosαcosβsinα
2024-09-11 17:58
【摘要】......三角恒等變換練習題一一、選擇題1.(2014年太原模擬)已知,則( )A.B.C.D.2.若,且在第二象限內(nèi),則為( )A.
【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2024-09-02 20:29
【摘要】專題四三角恒等變形一、知識點擊1.兩角和與差的余弦、正弦、正切公式cos(α-β)=cosαcosβ+sinαsinβ,(C(α-β))cos(α+β)=cos_αcos_β-sin_αsin_β,(C(α+β))sin(α-β)=sin_αcos_β-cos_αsin_β,(S(α-β))sin(α+β)=sin_αcos_β+cos_αsin_β,(S(α+
2025-06-03 12:50
【摘要】范文范例參考三角恒等變換適用學科數(shù)學適用年級高三適用區(qū)域福建課時時長(分鐘)120知識點教學目標教學重點教學難點教學過程一、復(fù)習預(yù)習二、知識講解1.兩角和與差的余弦、正弦、正切公式cos(α-β)=cosαcosβ+sinαsinβ (Cα-β)cos