【摘要】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2025-01-09 13:38
【摘要】第一篇:不等式的證明 學習資料 教學目標 (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡單的不等式; (3)能靈活根據(jù)題目選擇適當?shù)?..
2024-10-28 23:51
【摘要】Mathwang幾個經(jīng)典不等式的關系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-06-04 08:24
【摘要】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學歸納法的使用原理.(3).會用數(shù)學歸納法證明一些簡單問題...
2024-11-08 22:00
【摘要】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2024-09-15 03:53
【摘要】不等式的證明(二)高三備課組反證法:從否定結(jié)論出發(fā),經(jīng)過邏輯推理,導出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。換元法:換元法是指結(jié)構較為復雜、量與量之間關系不很明了的命題,通過恰當引入新變量,代換原題中的部分式子,簡化原有結(jié)構,使其轉(zhuǎn)化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2024-09-03 02:36
【摘要】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【摘要】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實數(shù),求證:x3+y...
2024-11-14 12:00
【摘要】第一篇:不等式證明 不等式證明 不等式是數(shù)學的基本內(nèi)容之一,它是研究許多數(shù)學分支的重要工具,在數(shù)學中有重要的地位,也是高中數(shù)學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2024-11-03 17:55
【摘要】不等式證明方法(五)判別式法、構造法、逆代法一、判別法通過對所證不等式的觀察、分析,構造出二次方程,證明中借助于二次方程的判別式,從而使不等式得證。.320,,:,2,,,,:12222azyxazyxazyxRzyx且不大于均不小于求證且已知例???????044)(44:2)(:2222222?????
2024-11-04 13:47
【摘要】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
【摘要】不等式的證明(習題課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積
2025-01-09 21:52