【摘要】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見(jiàn)中線加倍延長(zhǎng)構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-01-12 22:05
【摘要】一、下列各題有“病”嗎?如果有“病”,請(qǐng)寫(xiě)出“病因”,沒(méi)有解答的,請(qǐng)你解答,并寫(xiě)出你認(rèn)為易讓別人犯錯(cuò)的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應(yīng)增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點(diǎn)E為邊CD上的一點(diǎn),AE的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)F,請(qǐng)你寫(xiě)出圖中的
2025-01-27 14:14
【摘要】第一章《解三角形》復(fù)習(xí)12sinsinsinabcRABC???正弦定理及其變形:其中,R是△ABC外接圓的半徑公式變形:a=_______,b=________,c=________2RsinA2RsinB2RsinCsin____,sin____,sin_
2024-09-15 16:45
【摘要】相似三角形復(fù)習(xí)(2)△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點(diǎn),CD與BE相
2025-01-12 12:54
【摘要】解三角形復(fù)習(xí)主干知識(shí)梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2024-09-15 16:02
【摘要】三角形全等(復(fù)習(xí))全等三角形(1)兩個(gè)能夠完全重合的三角形叫全等三角形,(2)全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等。(3)判定兩個(gè)三角形全等的公理或定理:①一般三角形有SSS、SAS、ASA、AAS②千萬(wàn)不要將SSA條件作為SAS條件來(lái)用。知識(shí)點(diǎn)三角形全等的證題思
2025-01-10 02:32
【摘要】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2024-09-04 23:38
【摘要】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請(qǐng)根據(jù)課本相關(guān)內(nèi)容,快速解決下列問(wèn)題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對(duì)應(yīng)________,各邊對(duì)應(yīng)成________的兩個(gè)三角形叫做相似三角形.2.判定(1)平行于三角
【摘要】人教新課標(biāo)四年級(jí)數(shù)學(xué)下冊(cè)本節(jié)課我們主要來(lái)學(xué)習(xí)三角形的分類(lèi),同學(xué)們要知道分類(lèi)的方法以及各類(lèi)三角形的特點(diǎn)。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個(gè)角都是銳角的三角形。直角直角三角形:有一個(gè)角是直角的三角形。鈍角鈍角三角形:有一個(gè)角是鈍角的三角形?!傲鲃?dòng)紅旗”有
2025-01-25 04:21
【摘要】三角形定義、有關(guān)概念、邊、角、外角主要線段三角形的角平分線三角形的中線三角形的高分類(lèi)按邊分不等邊三角形等腰三角形底邊和腰不相等的等腰三角形等邊三角形按角分直角三角形斜三角形銳角三角形鈍角三角形性質(zhì)(一般三角形)邊的關(guān)系三角形兩邊的和大
【摘要】如圖,在等腰三角形ABC中,AB=AC.(1)根據(jù)等腰三角形的性質(zhì),能得出什么結(jié)論?BACD(2)請(qǐng)你添加一個(gè)條件,使得△ABC成為等邊三角形.(3)作底邊BC的中線AD,你又能得出什么結(jié)論?并請(qǐng)你說(shuō)明理由.(4)如果AC=5,BC=6,求△ABC的面積.ABCD在直角△ABC中,
2025-01-13 22:20
【摘要】三角形全等的條件(復(fù)習(xí))全等三角形概念及性質(zhì):1:什么是全等三角形?一個(gè)三角形經(jīng)過(guò)哪些變化可以得到它的全等形?2:全等三角形有哪些性質(zhì)?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形。(1):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。(2):全等三角形的周長(zhǎng)相等、面積相等。(3)
2024-08-28 00:05
【摘要】三角形全等的判定復(fù)習(xí)課三角形全等的定義及性質(zhì)定義:能夠完全重合的兩個(gè)三角形全等性質(zhì):兩個(gè)全等的三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角分別相等教學(xué)內(nèi)容一、三角形全等的定義二、三角形全等的判斷定理(SAS)(ASA)推論角角邊(AAS)(SSS)4.“HL”定理三、應(yīng)用四、小結(jié)
2025-01-10 01:04
【摘要】銳角三角形直角三角形鈍角三角形——有一個(gè)角是鈍角。三角形按角的分類(lèi)——三個(gè)角都是銳角?!幸粋€(gè)角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2024-09-11 14:23
【摘要】合作中學(xué)習(xí)學(xué)習(xí)中創(chuàng)新全等三角形復(fù)習(xí)中考總復(fù)習(xí)之--學(xué)習(xí)目標(biāo):通過(guò)概念的復(fù)習(xí)和典型例題評(píng)析,使學(xué)生掌握三角形全等的判定、性質(zhì)及其應(yīng)用。學(xué)習(xí)重點(diǎn):典型例型評(píng)析。學(xué)習(xí)難點(diǎn):學(xué)生綜合能力的提高。全等三角形的性質(zhì):對(duì)應(yīng)邊、對(duì)應(yīng)角相等。全等三角形的判定:知識(shí)點(diǎn)一般三角形全等的判定:
2025-03-01 22:52