【摘要】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數溫故知新1.當時:0??2.當時:0
2024-09-25 23:54
【摘要】平面向量基本定理及坐標運算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
2025-05-12 01:22
【摘要】?1.平面向量共線的坐標表示?設a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a=(-1,2),b=(3,5)?B.a=(1,2),b=(2,1)?C.a=(2,-1),b=(3,4)?D.a=(-2,1
2024-09-15 18:26
【摘要】平面向量的坐標運算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應一一對應點AOA向量(,)xy坐標1122+eeaaa?12(,)aaa?1
2024-08-30 05:00
【摘要】海鹽高級中學高新軍復習引入:?若e1、e2是同一平面內的兩個不共線向量,則對于這一平面內的任意向量a,有且只有一對實數λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數乘、模的運算
2024-09-15 06:24
【摘要】平面向量基本定理2022年8月22日星期一(0),,.(a0,0b0aabbab?????????向量與共線當且僅當有唯一一個實數使若當時,不唯一;當時,不存在)一、課前準備::共線向量定理復習1:12122:,
2024-09-04 16:48
【摘要】第一篇:《平面向量基本定理》教案 一、教學目標: : 了解平面向量基本定理及其意義,理解平面里的任何一個向量都可以用兩個不共線的向量來表示;能夠在具體問題中適當地選取基底,使其他向量都能夠用基底...
2024-10-20 21:04
【摘要】第一篇:平面向量基本定理教案 § 教學目的: (1)了解平面向量基本定理; (2)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,初步掌握應用向量解決實際問題的重要思想方法;(3)能夠...
2024-11-16 22:11
【摘要】平面向量基本定理問題情境火箭在飛行過程中的某一時刻速度可以分解成豎直向上和水平向前的兩個速度。在力的分解的平行四邊形過程中,我們看到一個力可以分解為兩個不共線方向的力之和。那么平面內的任一向量否可以用兩個不共線的向量來表示呢?動畫演示平面向量基本定理12121122,,
2024-12-06 17:16
【摘要】人教版高一數學第二學期第五章第主講:特級教師王新敞《高中數學同步輔導課程》平面向量的基本定理2020/12/17特級教師王新敞----源頭學子2奎屯王新敞新疆教學目的:教學重點:教學難點:1.了解平面向量基本定理的證明.2.掌握平面向量基本定理及其應用:①平面內的任
2025-01-13 03:15
【摘要】平面向量基本定理2022年9月25日晚21時10分04秒,神舟七號載人航天飛船在酒泉衛(wèi)星發(fā)射中心發(fā)射升空,9月27日下午16時30分航天員翟志剛首次進行出艙活動,成為中國太空行走第一人。vv1v2依照速度的分解,平面內任一向量a可作怎樣的分解呢?12?a=eea1e2ea1e2e
2024-09-04 14:47
【摘要】練習:1、判斷以下說法對錯:(1)一個平面內只有一對不共線向量可作為表示該平面所有向量的基底。()(2)一個平面內有無數多對不共線向量可作為表示該平面所有向量的基底。()(3)零向量不可作為基底中的向量。()對對錯B課堂練習
2025-01-12 00:20
【摘要】平面向量基本定理課時練1.給出下面三種說法:①一個平面內只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內有無數多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內有無數多個基底,又零向
【摘要】§高一()班姓名:上課時間:【目標與導入】1、學習平面向量基本定理及其應用;2、學會在具體問題中適當選取基底,使其他向量能夠用基底來表達?!绢A習與檢測】1、點C在線段AB上,且,,則等于()ABA、B、
2025-06-03 23:06
【摘要】高考總復習高中數學高考總復習平面向量基本定理及坐標表示習題及詳解一、選擇題1.(2010·安徽)設向量a=(1,0),b=(,),則下列結論中正確的是( )A.|a|=|b| B.a·b=C.a-b與b垂直 D.a∥b[答案] C[解析] |a|=1,|b|=,故A錯;a·b=,故B錯;(a-b)·b=
2025-06-04 12:41