【摘要】練習(xí):1、判斷以下說法對錯:(1)一個平面內(nèi)只有一對不共線向量可作為表示該平面所有向量的基底。()(2)一個平面內(nèi)有無數(shù)多對不共線向量可作為表示該平面所有向量的基底。()(3)零向量不可作為基底中的向量。()對對錯B課堂練習(xí)
2025-01-12 00:20
【摘要】平面向量基本定理課時練1.給出下面三種說法:①一個平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內(nèi)有無數(shù)多個基底,又零向
2025-05-12 01:22
【摘要】......專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.
【摘要】“平面向量基本定理”課后反思乳山市第二中學(xué)于水英新課程標(biāo)準(zhǔn)指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于接受、記憶、模仿和練習(xí)高中數(shù)學(xué)課程還應(yīng)倡導(dǎo)自主探究、動手實踐、合作交流等學(xué)習(xí)數(shù)學(xué)的方式……”,再者由于平面向量基本定理內(nèi)容比較抽象,學(xué)生理解起來有一定的困難,基于這兩方面的原因,所以本節(jié)課的教學(xué)設(shè)計的出發(fā)點是讓學(xué)生在“觀察--嘗試—收獲”中,全程參與知識的形成過程,在教師提出問題后能
2024-08-30 14:23
【摘要】西安高新第三中學(xué)導(dǎo)學(xué)案學(xué)科數(shù)學(xué)編寫孫晉校對班級高一()班小組學(xué)生評價課題第1課時課題:§2.4平面向量的坐標(biāo)學(xué)習(xí)目
2025-06-03 23:06
【摘要】課題:平面向量基本定理班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應(yīng)用?!菊n前預(yù)習(xí)】1、共線向量基本定理一般地,對于兩個向量??baa,0?,如果有一個實數(shù)?,使_______
2025-01-22 21:43
【摘要】第一篇:平面向量基本定理(教學(xué)設(shè)計) 平面向量基本定理 教學(xué)設(shè)計 平面向量基本定理教學(xué)設(shè)計 一、教材分析 本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【摘要】平面向量基本定理復(fù)習(xí)回顧:1、兩個向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個實數(shù)如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù),,使得
【摘要】專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.B.C.D. 【答案】A【解析】∵=(3,1),∴=(-7,-4),故選A.2.【201
【摘要】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2024-08-10 20:18
【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2025-01-15 17:12
【摘要】當(dāng)時,0??與同向,ba且是的倍;||b||a?當(dāng)時,0??與反向,ba且是的倍;||b||a||?當(dāng)時,0??0b?,且。||0
2025-01-12 03:31
【摘要】(2)共線向量的一個充要條件:aa????0時,與同向;?a?a=0時,?00??a(1)實數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2024-09-04 17:39
【摘要】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2024-09-14 16:20
【摘要】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-05-13 04:29