【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對于證明題,有三種思考方式: (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】第一篇:談初中幾何證明題的入門 談初中幾何證明題的入門 l初一了,學(xué)生開始從實(shí)驗(yàn)幾何向論證幾何過渡。在之前,雖然學(xué)過一部分,但沒有格式上的特殊要求,只要能看懂圖形,根據(jù)圖形回答問題,也就是說初一是...
2024-11-03 22:01
【摘要】第一篇:淺談初中幾何證明題教學(xué) 淺談初中幾何證明題教學(xué) 學(xué)習(xí)幾何對培養(yǎng)學(xué)生邏輯思維及邏輯推理能力有著特殊的作用。對于眾多的幾何證明題,幫助學(xué)生尋找證題方法和探求規(guī)律,對培養(yǎng)學(xué)生的證題推理能力,往往...
2024-10-29 06:03
【摘要】初中幾何證明練習(xí)題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點(diǎn),求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點(diǎn),ED交AC于Q,ED的延長線交AB的延長線于P,求證:PD·Q
2025-05-11 12:35
【摘要】第一篇:幾何證明題 幾何證明題集(七年級下冊) 姓名:_________班級:_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【摘要】第一篇:初中幾何基礎(chǔ)證明題(初一) 幾何證明題(1) ,AD∥BC,∠B=∠D,求證:AB∥CD。 A D C ⊥AB,EF⊥AB,∠1=∠2,求證:∠AGD=∠ACB。 A D /...
2024-10-29 01:53
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點(diǎn),連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時,求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.(
2025-05-11 12:13
【摘要】第一篇:談初中幾何證明題教學(xué)(模版) 談初中幾何證明題教學(xué) 眾所周知,幾何證明是初中數(shù)學(xué)學(xué)習(xí)的難點(diǎn)之一,其難就難在如何尋找證明思路,追根問底還是因?yàn)閹缀巫C明題的本質(zhì)不易把握。為此,在初等幾何的學(xué)習(xí)...
2024-10-29 06:39
【摘要】第一篇:初中幾何證明題思路 學(xué)習(xí)總結(jié):中考幾何題證明思路總結(jié) 幾何證明題重點(diǎn)考察的是學(xué)生的邏輯思維能力,能通過嚴(yán)密的“因?yàn)椤?、“所以”邏輯將條件一步步轉(zhuǎn)化為所要證明的結(jié)論。這類題目出法相當(dāng)靈活,不...
2024-10-28 22:45
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時,若半徑為rn的n個等
2025-05-11 06:14
【摘要】第一篇:初中幾何證明題 初中幾何證明題 己知M是△ABC邊BC上的中點(diǎn),,D,E分別為AB,AC上的點(diǎn),且DM⊥EM。 求證:BD+CE≥DE。 ,使MF=EM,連BF.∵BM=CM,∠BMF...
2024-10-29 01:21
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時候幾何題做不出來就是因?yàn)闆]有利用好隱藏...
2024-10-21 22:38
【摘要】第一篇:如何進(jìn)行初中幾何證明題的教學(xué) 如何進(jìn)行初中幾何證明題的教學(xué) 俗話說:“幾何學(xué)、叉叉角角,老師難教、學(xué)生難學(xué)”我從多年的教學(xué)中得到:初中幾何證明題即是學(xué)習(xí)的重點(diǎn),又是難點(diǎn)。很多同學(xué)對幾何證明...
2024-10-29 02:54
【摘要】第一章相交線與平行線1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是鄰補(bǔ)角,如∠1與∠2。且∠1+∠2=180°2.對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,像這樣的兩個角互為對頂角,如∠2與∠4。對頂角的性質(zhì):對頂角相等,即∠2=∠4,∠1=∠3:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
2024-08-06 21:33
【摘要】第一篇:幾何證明題訓(xùn)練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時復(fù)西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進(jìn)最大的動力!1 您的理解與支持是我們前進(jìn)...
2024-10-21 22:32