【摘要】勾股定理單元測試題一、選擇題1、下列各組數(shù)中,能構(gòu)成直角三角形的是()A:4,5,6B:1,1,C:6,8,11D:5,12,232、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:21
2025-08-09 19:15
【摘要】八年級《勾股定理和實(shí)數(shù)》測試題姓名一、選擇題(30分)()A.6、8、10、12、13、18、22、12、152.一個直角三角形的一條直角邊長為12cm,斜邊長為15cm,則此直角三角形的面積為()cmcmcm
2025-05-11 02:14
【摘要】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-08-09 07:15
【摘要】:如圖,在△ABC中,∠C=90°,點(diǎn)M在BC上,且BM=AC,點(diǎn)N在AC上,且AN=MC,AM與BN相交于點(diǎn)P,求證:∠BPM=45°答案:如圖,過點(diǎn)M作ME∥=(平行等于)AN,連NE,BE,則四邊形AMEN為平行四邊形得NE=AM,ME⊥BC∵M(jìn)E=CM,∠EMB=∠MCA=90°,BM=AC∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2
2025-08-10 07:41
【摘要】勾股定理經(jīng)典例題含答案11頁勾股定理是一個基本的初等幾何定理,直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊為a和b,斜邊為c,那么a2+b2=c2,若a、b、c都是正整數(shù),(a,b,c)叫做勾股數(shù)組。勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的
2025-08-10 07:40
【摘要】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求
【摘要】P231總復(fù)習(xí)答案1.1000米。2.答案不唯一,如分別測出線段AD,CD,AC的長,看是否是滿足勾股數(shù),若滿足則垂直。3.略。4.沒有最小的實(shí)數(shù),又絕對值最小的實(shí)數(shù)。5.(1);(2);(3)(4)-4,10-4。6.(1);(2);(3);(4)103。7.(1);(2)9或10;(3);(4)5或6;8.(1);(2);9.(1);(2)13;(3)-
2025-07-25 19:28
【摘要】勾股定理單元測試題及答案一、選擇題1、下列各組數(shù)中,能構(gòu)成直角三角形的是()A:4,5,6B:1,1,C:6,8,11D:5,12,232、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:21
2025-08-09 04:05
【摘要】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-08-10 07:39
【摘要】勾股定理競賽培訓(xùn)題1、如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點(diǎn)C逆時針旋轉(zhuǎn)一個角度α(0°<α<90°),使點(diǎn)A,D,E在同一直線上,連接AD,BE.(1)①依題意補(bǔ)全圖2;②求證:AD=BE,且AD⊥BE;③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;(2)如圖3,正方形ABC
2025-08-15 00:04
【摘要】勾股定理復(fù)習(xí)一、知識要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達(dá)哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質(zhì),揭示的是三邊之間的數(shù)量關(guān)系。它的主要作用是已知直角三角形的兩邊求第三邊
【摘要】高任祿成勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
2025-08-15 01:48
【摘要】勾股定理和勾股定理逆定理經(jīng)典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達(dá)建筑物的高度是多少米?DABC2、如圖
2025-05-11 13:00