【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):;2.能通過運算法則求出導(dǎo)數(shù)并解決相應(yīng)問題。教學(xué)重點:.靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則。教學(xué)難點:準(zhǔn)確快速的對函數(shù)求導(dǎo)。課前預(yù)習(xí):問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若
2025-02-07 06:45
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)函數(shù)的和、差、積、商的導(dǎo)數(shù)課后知能檢測蘇教版選修1-1一、填空題1.下列求導(dǎo)正確的是________.①(x+1x)′=1+1x2;②(log2x)′=1xln2;③(x3+ln3)′=3x2+13;④(x2cosx)′=-2xsin
2025-02-06 18:01
【摘要】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)函數(shù)的和、差、積、商的導(dǎo)數(shù)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求一些函數(shù)的導(dǎo)數(shù).,學(xué)會用法則求乘積形式的函數(shù)的導(dǎo)數(shù)二:課前預(yù)習(xí)1、基本公式:?????)()(xgxf_______________???
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.準(zhǔn)確記住函數(shù)和、差、積、商的導(dǎo)數(shù)公式并能熟練應(yīng)用二:課前預(yù)習(xí)1.函數(shù)的和差積商的導(dǎo)數(shù)求導(dǎo)法則:(默寫)2.求下列函數(shù)的導(dǎo)數(shù):(1)423
2025-01-23 00:30
【摘要】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)&
2025-01-13 00:29
【摘要】為常數(shù))????(x)x)(1(1'??1)a0,lna(aa)a)(2(x'x???且1)a,0a(xlna1elogx1)xlog)(3(a'a????且sinx(7)(cosx)'??e)e)(4(x'x?x1
2025-01-12 00:25
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第7課時函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)教學(xué)目標(biāo):、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù);.教學(xué)重點:靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點:函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)
2025-01-22 17:30
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第6課函數(shù)的和、差、積、商的導(dǎo)數(shù)教學(xué)案蘇教版選修1-1班級:高二()班姓名:____________教學(xué)目標(biāo):1.理解兩個函數(shù)的和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求一些函數(shù)的導(dǎo)數(shù);2.理解兩個函數(shù)的積的導(dǎo)數(shù)法則,學(xué)會用法則求乘積形式的函數(shù)的導(dǎo)數(shù);3.能夠綜合運用各種
【摘要】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-07-15 21:33
【摘要】倍角、半角公式及三角函數(shù)的積化和差與和差化積復(fù)習(xí)目標(biāo):、半角公式,并能用這些公式進(jìn)行簡單三角函數(shù)式的化簡、求值和證明恒等式。,和差化積公式的推導(dǎo)過程。初步運用公式進(jìn)行和積互化。進(jìn)行簡單的三角函數(shù)求值、化簡、證明。題型一:求三角函數(shù)值問題:求非特殊角的三角函數(shù)值的基本思路是什么呢?答:將非特殊角化為特殊角,不能化成
2025-01-21 12:09
【摘要】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2024-09-03 06:07
【摘要】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點取得極值的必要條件和充分條件/會用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導(dǎo)數(shù)解決某些實際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個區(qū)間內(nèi)y′
2024-12-02 15:55
【摘要】和差化積公式: sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2] 和差化積公式由積化和差公式變形得到,積化和差公式是由正
2024-09-01 23:59
【摘要】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2025-01-24 01:21
【摘要】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點解析
2025-01-14 02:10