【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2024-07-25 12:05
【摘要】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2024-07-29 00:27
【摘要】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2024-07-23 13:43
2024-07-25 06:48
【摘要】確定二次函數(shù)的表達式第二章二次函數(shù)導入新課講授新課當堂練習課堂小結(jié)學習目標.(難點).(重點)導入新課復習引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設:(表達式)
2024-07-29 00:42
2024-07-30 07:25
【摘要】一.選擇題:1.已知拋物線的頂點為(1,2),且通過(1,10),則這條拋物線的表達式為()A.y=3-2B.y=3+2C.y=3-2D.y=-3-22.已知二次函數(shù)的圖象過點(1,-1),(2,-4),(0,4)三點,那么它的對稱軸是直線()A.B.C.D.3.一個二次函數(shù)
2025-05-12 06:36
【摘要】勤勉而頑強地鉆研,永遠可以使你百尺竿頭更進一步。
2025-02-09 22:58
【摘要】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級教學目標:1.會用待定系數(shù)法確定二次函數(shù)的表達式.2.能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.教學重、難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達式.難點:能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.課前準備:多
2025-02-11 12:44
【摘要】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級教學目標:,體會求二次函數(shù)表達式的思想方法,培養(yǎng)數(shù)學應用意識..、比較、分析、概括等邏輯思維能力引導學生探索、發(fā)現(xiàn),以培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神和良好的學習習慣.教學重點與難點:重點:用待定系數(shù)法求二次函數(shù)的解析式.難點:建立
2025-02-10 10:59
【摘要】謝謝觀看Thankyouforwatching!
2024-07-24 20:04
【摘要】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2024-07-26 02:54
【摘要】“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達式為_________.已知一次函數(shù)y=kx+b圖象上兩點的坐標,
2025-01-20 22:39
2024-07-26 03:00
【摘要】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級學習目標:..教學重點與難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達式.難點:會求簡單的實際問題中的二次函數(shù)表達式.教學過程:一、復習回顧?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k[
2025-02-10 05:07