【摘要】由遞推公式求通項公式的常用方法由數(shù)列的遞推公式求通項公式是高中數(shù)學(xué)的重點問題,也是難點問題,它是歷年高考命題的熱點題。對于遞推公式確定的數(shù)列的求解,通??梢酝ㄟ^遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時若不能直
2025-08-05 13:57
【摘要】用心愛心專心遞推數(shù)列通項求解方法舉隅類型一:1nnapaq???(1p?)思路1(遞推法):??123()nnnnapaqppaqqpppaqqq?????????????????……121(1npaqpp??????…211)
2024-11-07 00:31
【摘要】......數(shù)列的通項公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項公式的常用方法.教學(xué)重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學(xué)難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學(xué)時數(shù):2課
2025-06-04 04:59
【摘要】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2024-09-14 10:15
【摘要】課時作業(yè)5 數(shù)列的遞推公式(選學(xué))時間:45分鐘 滿分:100分課堂訓(xùn)練1.在數(shù)列{an}中,a1=,an=(-1)n·2an-1(n≥2),則a5=( )A.- B.C.- D.【答案】 B【解析】 由an=(-1)n·2an-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=.2.某數(shù)列第一項為1,
2025-05-12 02:52
【摘要】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2024-08-06 05:23
【摘要】數(shù)列通項公式的求法集錦非等比、等差數(shù)列的通項公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對數(shù)列求通項公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式。解:∵這n-1個等式累加得:=
2024-08-06 05:28
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項公式遞推數(shù)列有關(guān)概念:①遞推公式:一個數(shù)列{}na中的第n項na與它前面若干項1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2024-09-15 19:41
【摘要】由遞推公式求數(shù)列通項的幾種常見的方法例1:(2020年全國高考試題文)一:累加法(2020年全國高考試題)二:累乘法例3:(2020年全國高考試題北京卷)三:待定系數(shù)法四:倒數(shù)法六:數(shù)學(xué)歸納法(歸納—猜想—證明)例5(2020年春季安徽理)小結(jié)六:數(shù)學(xué)歸納
2025-01-13 02:30
【摘要】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2024-09-13 23:50
【摘要】用不動點法求遞推數(shù)列(a2+c2≠0)的通項1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2024-08-05 01:55
【摘要】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習(xí)若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒⒐椒ㄒ阎獢?shù)列的前項和與的關(guān)系,求數(shù)列的通項可用公式求解.例2.①
2024-08-06 05:29
【摘要】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公
2025-05-12 02:53
【摘要】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2024-12-24 19:02
【摘要】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對獨立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識主要涉及等差、等比數(shù)列的通項公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競賽和高考中.
2025-02-23 06:52