【正文】
re is no intent here to exercise any prior restraint on publication.C. FVCOM確認(rèn)用戶在測(cè)試結(jié)果正式出版以前可以通知陳常勝博士任何FVCOM模式確認(rèn)測(cè)試情況。這些不受出版的限制。Chapter 1: Introduction第一章 序言Throughout much of the world oceans, the inner continental shelves and estuaries are characterized by barrier island plexes, inlets, and extensive intertidal salt marshes. Such an irregularlyshaped oceanland margin system presents a serious challenge for oceanographers involved in model development even though the governing equations of ocean circulation are well defined and numerically solvable in terms of discrete mathematics. Two numerical methods have been widely used in ocean circulation models: (1) the finitedifference method (Blumberg and Mellor, 1987。 Haidvogel et al., 2000) and (2) the finiteelement method (Lynch and Naimie, 1993。 Chen et al. 2001。 Cockburn et al., 1998) has recently been applied to ocean and have shown promise in improving both putational accuracy and efficiency.全球海洋內(nèi)部大陸架和河口有復(fù)雜的礁島、水灣、廣闊的高潮線與低潮線之間的鹽堿灣等特征。有兩種常用的數(shù)學(xué)方法解決大洋環(huán)流模型:(1)有限差分方法(Blumberg and Mellor, 1987。Haidvogel et al., 2000)(2)有限元方法(Lynch and Naimie, 1993。有限差分法基于離散方法并具有計(jì)算和編碼效率的優(yōu)點(diǎn)。 Chen et al. 2001。有限元法最大的優(yōu)點(diǎn)是幾何學(xué)的靈活性。P型有限元法(Maday and Patera, 1988)或不連續(xù)Galerkin方法(Reed and Hill, 1973。We have developed a 3D unstructuredgrid, freesurface, primitive equation, FiniteVolume Coastal Ocean circulation Model (called FVCOM) (Chen et al. 2003a。 Chen et ).與有限差分法和有限元法使用的微分形式不同,F(xiàn)VCOM是對(duì)控制方程進(jìn)行離散。從技術(shù)角度來看,F(xiàn)VCOM結(jié)合了用于簡(jiǎn)單離散編碼和計(jì)算功率的有限差分法以及用于幾何靈活性的有限元法的優(yōu)良特征。This manual is provided to help users to 1) understand the basic discrete structure and numerical methods used in FVCOM and 2) learn how to use the model for their own applications. Detailed instructions are given for all steps (., grid generation, model input and output, pilation, parallel putation, etc.). Several experiments are included to provide new users with simple examples of model setup and execution本手冊(cè)將為用戶提供以下幫助:(1)理解FVCOM使用的基本離散結(jié)構(gòu)和數(shù)學(xué)方法;(2)學(xué)習(xí)怎樣應(yīng)用本模式。包括幾個(gè)實(shí)驗(yàn)結(jié)果為新用戶提供模式建立和運(yùn)行的幾個(gè)簡(jiǎn)單例子。 Chapter 3: the finitevolume discrete method。 Chapter 5: the open boundary treatments。 Chapter 7: the sediment module。 Chapter 9: the tracertracking model。 Chapter 11: the sea ice module, Chapter 12: the code parallelization。 Chapter 14: the model installation。 Chapter 16: examples of model applications, and Chapter 17: an example of the unstructured grid generation.剩余章節(jié)結(jié)構(gòu)如下。Users should be aware that this manual is only useful for the current version of FVCOM. FVCOM is in continually testing and improvement by a SMAST/UMASSDWHOI effort led by Changsheng Chen and Robert C. Beardsley. Some very recent modifications may not have been included in this manual. If users find any inconsistency between this manual and the FVCOM code, it is likely to be due to a typo in the manual. Please report any problems with this manual as well as suggestions for improvement, so that future versions can be enhanced.用戶應(yīng)該知道本手冊(cè)僅適用于FVCOM的當(dāng)前版本。如果用戶發(fā)現(xiàn)任何這本手冊(cè)和FVCOM代碼之間的矛盾,可能是手冊(cè)中的印刷問題。Chapter 2: The Model Formulation第二章:模型公式. The Primitive Equations in Cartesian Coordinates 直角坐標(biāo)系下的原始方程The governing equations consist of the following momentum, continuity, temperature, salinity, and density equations: 控制方程包括下列動(dòng)量方程、連續(xù)方程、溫度方程、鹽度方程和密度方程:where x, y, and z are the east, north, and vertical axes in the Cartesian coordinate system。 T is the temperature。 is the density。 f is the Coriolis parameter。 is the vertical eddy viscosity coefficient。整體水柱深度為其中H為底部深度(z=0);為自由面高度(z=0)。 y: northward。The surface and bottom boundary conditions for temperature are:溫度的表面和底邊界條件為:where is the surface net heat flux, which consists of four ponents: downward shortwave, longwave radiation, sensible, and latent fluxes, SW( x, y,0,t ) is the shortwave flux incident at the sea surface, and is the specific heat of seawater. is the horizontal thermal diffusion coefficient, is the slope of the bottom bathymetry, and n is the horizontal coordinate shown in Figure (Pedlosky, 1974。為底面地形;(Pedlosky, 1974。Fig. : Schematic of the noflux boundary condition on the bottom slope. 底面傾斜無通量邊界條件示意圖The longwave, sensible and latent heat fluxes are assumed here to occur at the ocean surface, while the downward shortwave flux SW( x, y, z, t ) is approximated by:假設(shè)長(zhǎng)波通量、顯熱通量和潛熱通量發(fā)生在海表面,向下的短波通量近似由下式給出:where a and b are attenuation lengths for longer and shorter (bluegreen) wavelength ponents of the shortwave irradiance, and R is the percent of the total flux associated with the longer wavelength irradiance. This absorption profile, first suggested by Kraus (1972), has been used in numerical studies of upper ocean diurnal heating by Simpson and Dickey (1981a, b) and others. The absorption of downward irradiance is included in the temperature (heat) equation in the form of其中a和b為組成短波輻照度的長(zhǎng)波長(zhǎng)和短波長(zhǎng)(藍(lán)綠)的衰減長(zhǎng)度;R為長(zhǎng)波長(zhǎng)輻照度占總通量的百分比。向下輻照度的吸收包含于下式的溫度(熱量)方程:This approach leads to a more accurate prediction of nearsurface temperature than the flux formulation based on a single wavelength approximation (Chen et al., 2003b).與基于一種單一波長(zhǎng)近似的通量公式相比,這種近似可以得到近表面溫度更精確的預(yù)報(bào)(Chen et al., 2003b)。 The surface and bottom boundary conditions for u, v, and w are:u,v,w的表面和底邊界條件如下:where and are the x and y ponents of surface wind and bottom stresses, is the groundwater volume flux at the bottom and W is the area of the groundwater source. The drag coefficient is determined by matching a logarithmic bottom layer to the model at a height above the bottom, .,其中和為表面風(fēng)和底壓力的x,y方向的成分;為底部地下水流量;為地下水源的面積。The kinematic and heat and salt flux conditions on the solid boundary are specified as: 固邊界的運(yùn)動(dòng)學(xué)條件、熱通量條件和鹽度條件如下: where is the velocity ponent normal to the boundary, and n is the coordinate normal to the boundary.其中為邊界的法線速度分量;n為邊界的法線坐標(biāo)。這樣做的原因是有限差分模型不易在不規(guī)則傾斜底面精確計(jì)算、。這種簡(jiǎn)化可以用于有小幅度傾斜底面地形的沿海大陸架,但在底部?jī)A斜很大的底面斷裂和大陸傾斜,這種近似會(huì)破壞底邊界層的動(dòng)力學(xué)特性以及對(duì)垂直混合、水平及垂直速度結(jié)果的估計(jì)。在有限體積近似中,不規(guī)則底部地形的底部?jī)A斜、溫度梯度和鹽度梯度可由簡(jiǎn)單的格林定理直接算出。這是FVCOM在海岸和深度大洋應(yīng)用的一個(gè)優(yōu)點(diǎn)。坐標(biāo)變換定義如下:where s varies from 1 at