【摘要】第一篇:中考數(shù)學(xué)幾何證明題 中考數(shù)學(xué)幾何證明題 在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.(1)在圖1中證明CE=CF; (2)若∠ABC=90°,G是EF的中點(diǎn)(如圖...
2024-10-15 02:41
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDEBC(2)延長BE交AD于F,當(dāng)∠BED=120°時(shí),
2025-05-22 03:51
【摘要】第一篇:高中數(shù)學(xué)立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。 線面平行→線線平行如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這...
2024-10-27 00:25
【摘要】專業(yè)整理分享高中數(shù)學(xué)解析幾何壓軸題1.選擇題1.已知傾斜角α≠0的直線l過橢圓(a>b>0)的右焦點(diǎn)交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線上任意一點(diǎn),則∠APB為( ?。?/span>
2025-05-22 05:15
【摘要】第一篇:數(shù)學(xué)幾何證明題(提高篇) 1.已知:如圖,P是正方形ABCD內(nèi)點(diǎn),∠PAD=∠PDA=15°.求證:△PBC是正三角 形. 2.已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是A...
2024-10-28 03:06
【摘要】第一篇:幾何證明題 幾何證明題集(七年級(jí)下冊) 姓名:_________班級(jí):_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【摘要】第一篇:中考數(shù)學(xué)經(jīng)典幾何證明題 2011年中考數(shù)學(xué)經(jīng)典幾何證明題 (一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)EF,分別交A...
2024-10-28 23:38
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.(
2025-05-11 12:13
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個(gè)等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時(shí),若半徑為rn的n個(gè)等
2025-05-11 06:14
【摘要】最新中考數(shù)學(xué)幾何證明(平行四邊形,菱形矩形正方形)經(jīng)典1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDE
2024-09-03 18:35
【摘要】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對(duì)于證明題,有三種思考方式:(1)正向思維。對(duì)于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-05-22 03:50
2025-05-22 04:49
【摘要】1、已知正方體,是底對(duì)角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-05-13 05:42