【摘要】第六節(jié)簡(jiǎn)單的三角恒等變換基礎(chǔ)梳理1、用于三角恒等變換的公式主要有:(1)____________________________,運(yùn)用它們可實(shí)現(xiàn)弦函數(shù)之間、弦函數(shù)與切函數(shù)之間的互化,其主要功能是變名;(2)________,運(yùn)用它們可實(shí)現(xiàn)與一個(gè)銳角有關(guān)的不同角之間的轉(zhuǎn)化,其主要功能是變角;(3)_____________________,它
2025-01-15 01:24
【摘要】1、同角三角函數(shù)的基本關(guān)系知識(shí)回顧??αcosαsin221Z)π2π(αtanαcosαsinα????kk,2、和(差)角的正弦、余弦、正切公式知識(shí)回顧??β)sin(α???sincoscossin?α??β)cos(
2024-12-03 20:26
【摘要】......《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B
2025-08-10 03:59
【摘要】范文范例參考《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B.C.D.3.在△ABC中,,則△ABC為()A.銳角三角形B.直角三角形
2025-08-10 04:03
【摘要】三角恒等變換專題復(fù)習(xí)(一)2012-8-7一、基本內(nèi)容串講1.兩角和與差的正弦、余弦和正切公式如下:;;對(duì)其變形:tanα+tanβ=tan(α+β)(1-tanαtanβ),有時(shí)應(yīng)用該公式比較方便。2.二倍角的正弦、余弦、正切公式如下:...要熟悉余弦“倍角”與“二次”的關(guān)系(升角
2025-05-11 05:44
【摘要】......三角恒等變換大題=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值.(x)=.(1)求f的值;(2
【摘要】 優(yōu)勝教育內(nèi)部資料張敬敬必修4三角函數(shù)三角恒等變換綜合練習(xí)一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是最符合題目要求的.)1.為終邊上一點(diǎn),則()A、 B、C、 D、2.下列函數(shù)中,以為周期且在區(qū)間上為增函數(shù)的函數(shù)是(
2025-05-12 02:03
【摘要】 兩角和與差的正弦、余弦和正切基礎(chǔ)梳理1.兩角和與差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_
2025-08-10 18:30
【摘要】三角恒等變換的常見技巧注:有*的內(nèi)容選看!一、教學(xué)內(nèi)容:三角恒等變換的常見技巧?二、學(xué)習(xí)目標(biāo)1、掌握引入輔助角的技巧;2、掌握常見的拆、拼角技巧;3、掌握公式的變用、逆用技巧;4、掌握三角對(duì)等式、齊次式的處理技巧;5、掌握弦切互化、異名化同名、異次化同次、異角化同角等變形技巧?三、知識(shí)要點(diǎn)1、三角恒等變換中的“統(tǒng)一”思想
2025-08-10 03:41
【摘要】......§兩角和與差的三角函數(shù)【復(fù)習(xí)目標(biāo)】1.掌握兩角和與差的三角函數(shù)公式,掌握二倍角公式;2.能正確地運(yùn)用三角函數(shù)的有關(guān)公式進(jìn)行三角函數(shù)式的求值.3.能正確地運(yùn)用三角公式進(jìn)行三角函數(shù)式
2025-08-11 20:23
【摘要】三角函數(shù)恒等變換一、三角函數(shù)的誘導(dǎo)公式1、下列各角的終邊與角α的終邊的關(guān)系角2kπ+α(k∈Z)π+α-α圖示與α角終邊的關(guān)系相同關(guān)于原點(diǎn)對(duì)稱關(guān)于x軸對(duì)稱角π-α-α+α圖示與α角終邊的關(guān)系關(guān)于y軸對(duì)稱關(guān)于直線y=x對(duì)稱2、六組誘
2025-07-03 07:40
【摘要】簡(jiǎn)單的三角恒等變換第一課時(shí)問(wèn)題提出t57301p2???????分別是什么?sin(α±β)=sinαcosβ±cosαsinβ??????tantan1tantan)(tan????cos(α±β)=cosαcosβsinα
2024-09-11 17:58
【摘要】......簡(jiǎn)單的三角恒等變換基礎(chǔ)鞏固強(qiáng)化1.(文)已知等腰三角形頂角的余弦值等于,則這個(gè)三角形底角的正弦值為( )A. B.-C. D.-[答案] C[解析] 設(shè)該等腰三角形的頂角為α,底角為β,則有α+2β=π,β=-,0,∵2cos2-1=cosα,∴sinβ=sin(-
2024-08-06 19:52
【摘要】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡(jiǎn)常用方法:①直接應(yīng)用公式進(jìn)行降次、消項(xiàng);②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡(jiǎn)要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項(xiàng)數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。