【摘要】相似矩陣的性質(zhì)及應(yīng)用畢業(yè)論文定義:設(shè)A、B為數(shù)域P上兩個(gè)n級(jí)矩陣,如果可以找到數(shù)域P上的n級(jí)可逆矩陣X,使得B=AX,就說A相似于B,記做.性質(zhì)1數(shù)域P上的n階方陣的相似關(guān)系是一個(gè)等價(jià)關(guān)系.證明:1〉(反身性)由于單位矩陣E是可逆矩陣,且A=AE,故任何方陣A與A相似.2〉(對(duì)稱性)設(shè)A與B相似,即存在數(shù)域P上的可逆方陣C,使得B=AC,由此可得A=CB=B,顯
2024-08-03 04:14
【摘要】浙江海洋學(xué)院本科畢業(yè)論文淺談“循環(huán)矩陣”的性質(zhì)及應(yīng)用畢業(yè)論文目錄摘要 IAbstract II1前言 12.循環(huán)矩陣的基本概念及性質(zhì) 3基本概念 3循環(huán)矩陣的性質(zhì) 3 73循環(huán)矩陣的推廣 10廣義循環(huán)矩陣 10循環(huán)矩陣 14反循環(huán)矩陣 17小結(jié) 21參考文獻(xiàn) 22致謝
2024-07-31 01:51
【摘要】反對(duì)稱矩陣的性質(zhì)及應(yīng)用畢業(yè)論文目錄中文摘要: 1英文摘要 1 22.反對(duì)稱矩陣的基本性質(zhì) 2 2 3 6 8 8 9 10反對(duì)稱矩陣特征值的性質(zhì)及證明 10 10 11 11參考文獻(xiàn) 12反對(duì)稱矩陣的性
2024-08-04 14:50
【摘要】分塊矩陣的基本性質(zhì)及其應(yīng)用畢業(yè)論文目錄摘要 IAbstract II第一章前言 1第二章:分塊矩陣 1 1 1 1 1 2第三章:分塊矩陣的應(yīng)用 3 3 5 7 9致謝 11參考文獻(xiàn) 12IV第一章前言在高等代數(shù)中,矩陣是一項(xiàng)很重要的內(nèi)容
2024-08-04 14:44
【摘要】中山大學(xué)本科畢業(yè)論文(設(shè)計(jì))(2016屆)題目:伴隨矩陣及其應(yīng)用姓名:學(xué)號(hào):學(xué)院:數(shù)學(xué)學(xué)
2024-08-06 03:33
【摘要】伴隨矩陣的若干性質(zhì)及應(yīng)用摘要矩陣是學(xué)習(xí)高等代數(shù)中的一個(gè)非常重要的知識(shí)點(diǎn),,,,對(duì)矩陣、,在以后的學(xué)習(xí)中遇到關(guān)于伴隨矩陣的問題我們可以直接應(yīng)用這些性質(zhì),使問題變得簡(jiǎn)單.關(guān)鍵詞矩陣伴隨矩陣特征值引言因?yàn)榘殡S矩陣是學(xué)習(xí)矩陣的一個(gè)重要知識(shí)點(diǎn),在計(jì)算中經(jīng)常出現(xiàn),、伴隨矩陣的轉(zhuǎn)置、伴隨矩陣的特征值、幾個(gè)特殊矩陣的伴隨矩陣的性質(zhì),.本文出現(xiàn)的矩陣和均為階方陣
2024-08-04 19:25
【摘要】酉矩陣與Hermite矩陣的淺談韋龍201131402摘要科學(xué)在發(fā)展,社會(huì)在進(jìn)步,人們對(duì)于數(shù)學(xué)的理解越來越深刻,數(shù)學(xué)應(yīng)用于日常生活生產(chǎn)越來越廣泛。在數(shù)學(xué)的很多分支和工程實(shí)際應(yīng)用中,都涉及到一些特殊的矩陣的性質(zhì)及構(gòu)造.本文討論兩類特殊的矩陣——酉矩陣和Hermite矩陣.酉矩陣和Hermite矩陣作為兩類特殊的矩陣,有很多良好的性質(zhì),在矩陣?yán)碚撝芯哂信e足輕重的作用。本文
2024-08-05 04:11
【摘要】畢業(yè)論文矩陣指數(shù)函數(shù)的性質(zhì)與計(jì)算PROPERTIESANDCALCULATIONOFMATRIXEXPONENTIALFUNCTION指導(dǎo)教師姓名:申請(qǐng)學(xué)位級(jí)別:學(xué)士論文提交日期:摘要矩陣函數(shù)是矩陣?yán)碚?/span>
2024-08-07 22:17
【摘要】幾類特殊矩陣的性質(zhì)的探討摘要隨著特殊矩陣的應(yīng)用越來越廣泛,人們對(duì)特殊矩陣的性質(zhì)的研究也越來越深入。相應(yīng)的,越來越多有關(guān)特殊矩陣的論文和期刊也層出不窮的發(fā)表。本文主要具體分析了四種特殊矩陣:伴隨矩陣、型矩陣、正交矩陣、冪零矩陣。論文的具體展開如下:第一章主要介紹特殊矩陣的背景以及發(fā)展?fàn)顩r,加深了我對(duì)特殊矩陣的進(jìn)一步認(rèn)識(shí);第二章講述了一些預(yù)備知
2024-08-07 17:24
【摘要】泰山學(xué)院畢業(yè)論文開題報(bào)告題目矩陣的秩的應(yīng)用及性質(zhì)開題報(bào)告學(xué)院泰山學(xué)院年級(jí)
2025-03-01 14:39
【摘要】畢業(yè)論文矩陣指數(shù)函數(shù)的性質(zhì)與計(jì)算PROPERTIESANDCALCULATIONOFMATRIXEXPONENTIALFUNCTION指導(dǎo)教師姓名:申請(qǐng)學(xué)位級(jí)別:學(xué)士論文提交日期:
2024-09-15 12:31
【摘要】通化師范學(xué)院本科生畢業(yè)論文(2012屆)題目置換矩陣的性質(zhì)及其推廣系別:數(shù)學(xué)系專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級(jí):
2024-08-03 06:40
【摘要】有關(guān)對(duì)角矩陣的證明與應(yīng)用畢業(yè)論文1有關(guān)對(duì)角矩陣的證明有關(guān)對(duì)角矩陣的分解第一種情況:對(duì)任意一個(gè)n級(jí)矩陣A的順序主子式都不等于零,我們可以利用初等變換將其化為一個(gè)上三角矩陣,即A等于一個(gè)下三角矩陣和一個(gè)上三角矩陣的乘積。而每一個(gè)上(下)三角矩陣又等于一個(gè)單位上(下)三角矩陣和一個(gè)對(duì)角陣的乘積。利用以上結(jié)論可以證明一些例題。例1:設(shè)n級(jí)矩陣A的順序主子式都不等于零,則A可以唯一
2024-08-03 17:14
【摘要】矩陣指數(shù)函數(shù)的性質(zhì)與計(jì)算PROPERTIESANDCALCULATIONOFMATRIXEXPONENTIALFUNCTION指導(dǎo)教師姓名:申請(qǐng)學(xué)位級(jí)別:學(xué)士論文提交日期:2014年6月8日摘要矩陣函數(shù)是矩陣
2024-09-15 10:29
【摘要】線性系統(tǒng)的時(shí)域分析狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算(1/1)狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算?下面進(jìn)一步討論前面引入的狀態(tài)轉(zhuǎn)移矩陣,主要內(nèi)容為:?基本定義?矩陣指數(shù)函數(shù)和狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)?狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)狀態(tài)轉(zhuǎn)移矩陣的定義(1/4)狀態(tài)轉(zhuǎn)移矩陣的定義?定義對(duì)于線性定常連續(xù)系統(tǒng)x’?Ax,
2025-07-16 21:34