freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

蘇科版八級(jí)上線段、角的軸對(duì)稱性同步試卷含答案解析-在線瀏覽

2025-02-27 03:19本頁(yè)面
  

【正文】 平分 ∠ ABC, ∴∠ PBC= =30176。 在 Rt△ PCB 中, =1, ∴ 點(diǎn) P 到邊 AB 所在直線的距離為 1, 故選: D. 【點(diǎn)評(píng)】本題考查了等邊三角形的性質(zhì)、角平分線的性質(zhì)、利用三角函數(shù)求值,解決本題的關(guān)鍵是等邊三角形的性質(zhì). 5.如圖, OC 是 ∠ AOB 的平分線, P 是 OC 上一點(diǎn), PD⊥ OA 于點(diǎn) D, PD=6,則點(diǎn) P 到邊 OB 的距離為( ) 第 12 頁(yè)(共 36 頁(yè)) A. 6 B. 5 C. 4 D. 3 【考點(diǎn)】角平分線的性質(zhì). 【分析】過(guò)點(diǎn) P 作 PE⊥ OB 于點(diǎn) E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得 PE=PD,從而得解. 【解答】解:如圖, 過(guò)點(diǎn) P 作 PE⊥ OB 于點(diǎn) E, ∵ OC 是 ∠ AOB 的平分線, PD⊥ OA 于 D, ∴ PE=PD, ∵ PD=6, ∴ PE=6, 即點(diǎn) P 到 OB 的距離是 6. 故選: A. 【點(diǎn)評(píng)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),是基礎(chǔ)題,比較簡(jiǎn)單,熟記性質(zhì)是解題的關(guān)鍵. 6.如圖,已知 OP 平分 ∠ AOB, ∠ AOB=60176。 CP=2, CP∥ OA,易得 △ OCP 是等腰三角形, ∠ COP=30176。角的直角三角形的性質(zhì),即可求得 PE 的值,繼而求得 OP 的長(zhǎng),然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得 DM 的長(zhǎng). 【解答】解: ∵ OP 平分 ∠ AOB, ∠ AOB=60176。 ∵ CP∥ OA, ∴∠ AOP=∠ CPO, ∴∠ COP=∠ CPO, ∴ OC=CP=2, ∵∠ PCE=∠ AOB=60176。 ∴ CE= CP=1, ∴ PE= = , ∴ OP=2PE=2 , ∵ PD⊥ OA,點(diǎn) M 是 OP 的中點(diǎn), ∴ DM= OP= . 故選: C. 【點(diǎn)評(píng)】此題考查了等腰三角形的性質(zhì)與判定、含 30176。 AD 是 △ ABC 的角平分線, AC=3, BC=4,則 CD 的長(zhǎng)是( ) A. 1 B. C. D. 2 【考點(diǎn)】角平分線的性質(zhì);三角形的面積;勾股定理. 第 14 頁(yè)(共 36 頁(yè)) 【分析】過(guò)點(diǎn) D 作 DE⊥ AB 于 E,根據(jù)角平分線上的點(diǎn)到角 的兩邊距離相等可得 DE=CD,利用勾股定理列式求出 AB,再根據(jù) △ ABC 的面積公式列出方程求解即可. 【解答】解:如圖,過(guò)點(diǎn) D 作 DE⊥ AB 于 E, ∵∠ C=90176。時(shí),四邊形 AEDF 是正方形; ④AE+DF=AF+DE. 其中正確的是( ) A. ②③ B. ②④ C. ①③④ D. ②③④ 【考點(diǎn)】角平分線的性質(zhì);全等三角形的判定與性質(zhì);正方形的判定. 第 15 頁(yè)(共 36 頁(yè)) 【專題】壓軸題. 【分析】 ①如果 OA=OD,則四邊形 AEDF 是矩形, ∠ A=90176。時(shí),四邊形 AEDF 的四個(gè)角都是直角,四邊形 AEDF 是矩形,然后根據(jù)DE=DF,判斷出四邊形 AEDF 是正方形即可. ④根據(jù) △ AED≌△ AFD,判斷出 AE=AF, DE=DF,即可判斷出 AE+DF=AF+DE 成立,據(jù)此解答即可. 【解答】解:如果 OA=OD,則四邊形 AEDF 是矩形, ∠ A=90176。時(shí),四邊形 AEDF 的四個(gè)角都是直角, ∴ 四邊形 AEDF 是矩形, 第 16 頁(yè)(共 36 頁(yè)) 又 ∵ DE=DF, ∴ 四邊形 AEDF 是正方形, ∴ ③正確. 綜上,可得 正確的是: ②③④. 故選: D. 【點(diǎn)評(píng)】( 1)此題主要考查了三角形的角平分線的性質(zhì)和應(yīng)用,以及直角三角形的 性質(zhì)和應(yīng)用,要熟練掌握. ( 2)此題還考查了全等三角形的判定和應(yīng)用,要熟練掌握. ( 3)此題還考查了矩形、正方形的性質(zhì)和應(yīng)用,要熟練掌握. 9.如圖, AD 是 △ ABC 的角平分線,則 AB: AC 等于( ) A. BD: CD B. AD: CD C. BC: AD D. BC: AC 【考點(diǎn)】角平分線的性質(zhì). 【專題】壓軸題. 【分析】先過(guò)點(diǎn) B 作 BE∥ AC 交 AD 延長(zhǎng)線于點(diǎn) E,由于 BE∥ AC,利用平行線分線段成比例定理的推論、平行線的性質(zhì),可得 ∴△ BDE∽△ CDA, ∠ E=∠ DAC,再利用相似三角形的性質(zhì)可有= ,而利用 AD 時(shí)角平分線又知 ∠ E=∠ DAC=∠ BAD,于是 BE=AB,等量代換即可證. 【解答】解:如圖 第 17 頁(yè)(共 36 頁(yè)) 過(guò)點(diǎn) B 作 BE∥ AC 交 AD 延長(zhǎng)線于點(diǎn) E, ∵ BE∥ AC, ∴∠ DBE=∠ C, ∠ E=∠ CAD, ∴△ BDE∽△ CDA, ∴ = , 又 ∵ AD 是角平分線, ∴∠ E=∠ DAC=∠ BAD, ∴ BE=AB, ∴ = , ∴ AB: AC=BD: CD. 故選: A. 【點(diǎn)評(píng)】此題考查了角平分線的定義、相似三角形的判定和性質(zhì)、平行線分線段成比例定理的推論.關(guān)鍵是作平行線. 10.如圖,在 △ ABC 中, ∠ C=90176。 以 A 為圓心,任意長(zhǎng)為半徑畫弧分別交 AB、 AC 于點(diǎn) M 和 N,再分別以 M、 N 為圓心,大于 MN 的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn) P,連結(jié) AP 并延長(zhǎng)交 BC 于點(diǎn) D,則下列說(shuō)法中正確的個(gè)數(shù)是( ) ①AD 是 ∠ BAC 的平分線; ②∠ ADC=60176。則由直角三角形的性質(zhì) 來(lái)求 ∠ ADC 的度數(shù); ③利用等角對(duì)等邊可以證得 △ ADB 的等腰三角形,由等腰三角形的 “三合一 ”的性質(zhì)可以證明點(diǎn) D在 AB 的中垂線上; ④利用 30 度角所對(duì)的直角邊是斜邊的一半、三角形的面積計(jì)算公式來(lái)求兩個(gè)三角形的面積之比. 【解答】解: ①根據(jù)作圖的過(guò)程可知, AD 是 ∠ BAC 的平分線. 故 ①正確; ②如圖, ∵ 在 △ ABC 中, ∠ C=90176。 ∴∠ CAB=60176。 ∴∠ 3=90176。即 ∠ ADC=60176。 ∴ AD=BD, ∴ 點(diǎn) D 在 AB 的中垂線上. 故 ③正確; ④∵ 如圖,在直角 △ ACD 中, ∠ 2=30176。 ∠ ACB=60176。 B. ∠ DOC=90176。 D. ∠ DAC=55176。再根據(jù)角平分線的定義求出 ∠ABO,然后利用三角形的內(nèi)角和定理求出 ∠ AOB 再根據(jù)對(duì)頂角相等可得 ∠ DOC=∠ AOB,根據(jù)鄰補(bǔ)角的定義和角平分線的定義求出 ∠ DCO,再利用三角形的內(nèi)角和定理列式計(jì)算即可 ∠ BDC,判斷出AD 為三角形的外角平分線,然后列式計(jì)算即可求出 ∠ DAC. 【解答】解: ∵∠ ABC=50176。 第 22 頁(yè)(共 36 頁(yè)) ∴∠ BAC=180176。﹣ 50176。=70176。=25176。﹣ ∠ BAC﹣ ∠ ABO=180176。﹣ 25176。 ∴∠ DOC=∠ AOB=85176。﹣ 60176。 ∴∠ BDC=180176。﹣ 60176。 故 C 選項(xiàng)正確; ∵ BD、 CD 分別是 ∠ ABC 和 ∠ ACE 的平分線, ∴ AD 是 △ ABC 的外角平分線, ∴∠ DAC= ( 180176。) =55176。 AB=3, AC=4, AD 平分 ∠ BAC 交 BC 于 D,則 BD 的長(zhǎng)為( ) A. B. C. D. 【考點(diǎn)】角平分線的性質(zhì);三角形的面積;勾股定理. 【專題】壓軸題. 第 23 頁(yè)(共 36 頁(yè)) 【分析】根據(jù)勾股定理列式求出 BC,再利用三角形的面積求出點(diǎn) A 到 BC 上的高,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得點(diǎn) D 到 AB、 AC 上的距離相等,然后利用三角形的面積求出點(diǎn) D到 AB 的長(zhǎng),再利用 △ ABD 的面積列式計(jì)算即可得解. 【解答】解: ∵∠ BAC=90176。 5= , ∵ AD 平分 ∠ BAC, ∴ 點(diǎn) D 到 AB、 AC 上的距離相等,設(shè)為 h, 則 S△ ABC= 3h+ 4h= 5 , 解得 h= , S△ ABD= 3 = BD? , 解得 BD= . 故選 A. 【點(diǎn)評(píng)】本題考查了角平分線的性質(zhì),三角形的面積,勾股 定理,利用三角形的面積分別求出相應(yīng)的高是解題的關(guān)鍵. 二、填空題(共 13 小題) 15.如圖,在 △ ABC 中, ∠ C=90176。 BD 是 ∠ ABC 的平分線.若 AB=6,則點(diǎn) D 到 AB 的距離是 . 【考點(diǎn)】角平分線的性質(zhì). 【分析】求出 ∠ ABC,求出 ∠ DBC,根據(jù)含 30 度角的直角三角形性質(zhì)求出 BC, CD,問(wèn)題即可求出. 【解答】解: ∵∠ C=90176。 ∴∠ ABC=180176。﹣ 90176。 ∵ BD
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1